二叉树的S型遍历(双栈)

思路:维护两个栈,逻辑如下:

  • 奇数层的遍历明显从右到左,其下一层反向所以这层入栈的子树也应该从右到左
  • 偶数层反向
    注意在维护STL的时候指针参数地传递,关于对象的赋值要处理好,可以用指针减少不必要的麻烦!
  • 在处理遍历方向时候通过根节点加入不同的栈能够完成顺序地完全对称遍历,也就是本来是之字形遍历变为S型遍历

Code

/*
struct TreeNode {
    int val;
    struct TreeNode *left;
    struct TreeNode *right;
    TreeNode(int x) :
            val(x), left(NULL), right(NULL) {
    }
};
*/
class Solution {
public:
    vector<vector<int> > Print(TreeNode* pRoot) {
        vector<vector<int> > ans;
        ans.clear();
        stack<TreeNode*> st1, st2;
        while (!st1.empty()) st1.pop();
        while (!st2.empty()) st2.pop();
         if (!pRoot) return ans;
        st1.push(pRoot);
        while (!st1.empty() || !st2.empty()) {
            vector<int> tmp;
            tmp.clear();
            if (!st1.empty()) {
                while (!st1.empty()) {
                    TreeNode* vis = st1.top();
                    st1.pop();
                    tmp.push_back(vis->val);                    
                    if (vis->left) st2.push(vis->left);
                    if (vis->right) st2.push(vis->right);
                }
            } else {
                while (!st2.empty()) {
                    TreeNode* vis = st2.top();
                    st2.pop();
                    tmp.push_back(vis->val);                    
                    if (vis->right) st1.push(vis->right);
                    if (vis->left) st1.push(vis->left);
                }
            }
            ans.push_back(tmp);
        }
        return ans;
    }
     
};

<think>嗯,用户这次明确要求双栈法的后序遍历实现和解释。看来用户对递归转非递归的遍历方式很感兴趣,可能是在准备面试或者学习数据结构。从引用内容看,双栈法的关键点有两个:一是对节点采用"根->右->左"的访问顺序(类似魔改版的前序遍历),二是用第二个栈反转输出顺序。这个思路在引用[2]和[5]都提到过,尤其引用[2]那句"doingareversedpre-ordertraversal"是核心提示。用户提供的引用[4]代码其实是单栈法,那个h变量用来记录上次访问节点的思路不太直观。相比之下双栈法虽然多用一个栈,但逻辑更清晰,更适合教学场景。不过要注意提醒用户空间复杂度会变成O(n),这是双栈法的明显缺点。解释时需要强调三个关键步骤:初始压入根节点、第一个栈的出栈顺序决定访问次序、第二个栈的反转作用。示例代码里特判空树很重要,很多实现会遗漏这点。用户可能是看单栈实现被绕晕了才转向双栈法,所以示意图比代码更重要——那个树状图和栈操作图示应该能直观展示"根右左"如何变成后序。相关问题的设计要延续遍历主题:空间对比引出Morris遍历双栈与单栈的差异分析帮助理解不同实现思路,先序遍历的延伸提问则考察知识迁移能力,这些都是用户可能需要的拓展方向。</think> 以下是二叉树非递归后序遍历的**双栈法**详细实现和解释,基于经典算法思路(参考您提供的引用[2][5]): --- ### **双栈法后序遍历实现** ```java public void postOrderTraversal(TreeNode root) { if (root == null) return; Stack<TreeNode> stack1 = new Stack<>(); Stack<TreeNode> stack2 = new Stack<>(); // 用于反转顺序 stack1.push(root); // 栈1循环:模拟"根->右->左"的访问顺序 while (!stack1.isEmpty()) { TreeNode node = stack1.pop(); stack2.push(node); // 当前节点压入栈2 // 左子节点先入栈1(后出栈) if (node.left != null) { stack1.push(node.left); } // 右子节点后入栈1(先出栈) if (node.right != null) { stack1.push(node.right); } } // 栈2输出:反转得到后序遍历(左->右->根) while (!stack2.isEmpty()) { System.out.print(stack2.pop().val + " "); } } ``` --- ### **核心原理解释** #### **步骤拆解:** 1. **栈1的操作逻辑**: - 每次从栈1弹出一个节点(当前子树的根节点),并**立刻压入栈2**。 - 然后按 **左子节点 → 右子节点** 的顺序压入栈1(由于栈的LIFO特性,实际访问顺序变为 **右→左**)。 - **本质**:在栈1中实现**反向的前序遍历**(根→右→左),此时栈2中节点顺序为: $$ \text{根节点} \rightarrow \text{右子树} \rightarrow \text{左子树} $$ 2. **栈2的反转作用**: - 将栈2中节点依次弹出,顺序变为: $$ \text{左子树} \rightarrow \text{右子树} \rightarrow \text{根节点} $$ 这正是后序遍历(左→右→根)的结果。 #### **示意图:** ``` 1 / \ 2 3 ``` | **栈1操作** | 栈2内容 | 实际访问顺序 | |---------------------|----------------|------------| | 压入1 → 弹出1 | [1] | 根(1) | | 压入2() → 压入3()| [1] | | | 弹出3 → 压入栈2 | [1,3] | 右(3) | | 弹出2 → 压入栈2 | [1,3,2] | 左(2) | | **栈2输出**:2 → 3 → 1 | **结果**: 2,3,1 | | --- ### **复杂度分析** - **时间复杂度**:$O(n)$ 每个节点恰好进出栈1和栈2各一次。 - **空间复杂度**:$O(n)$ 最坏情况下(如斜树),两个栈共存储$2n$个节点引用,但实际最大空间为$O(n)$级别[^2][^5]。 --- ### **相关问题** 1. **双栈法与单栈法有何优劣?** - 双栈法逻辑清晰但需额外空间,单栈法(如引用[4])节省空间但需记录前驱节点,易出错。 2. **能否用双栈法实现其他遍历?** 此方法**仅适用于后序遍历**。中序/前序遍历通常用单栈实现(参考引用[1])。 3. **如何优化双栈法的空间占用?** 可用`Collections.reverse()`直接反转列表,但时间复杂度仍为$O(n)$。 4. **为什么栈1要先压左子节点再压右子节点?** **为保证弹出顺序是右→左**: 后进先出(LIFO)使右子节点先被处理,从而在栈2中形成 **根→右→左**,最终反转成后序[^2][^5]。 > 注:双栈法通过反向预序(根→右→左)+ 栈反转,巧妙地避免了单栈法中复杂的父子节点关系判断[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小胡同的诗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值