事务和隔离级别深入理解,看完就懂了

1. 事务基础

1.1 事务的定义

事务(Transaction)是数据库操作的一个基本概念,它是访问并可能更新数据库中各种数据项的一个程序执行单元。在关系数据库中,一个事务可以是一条 SQL 语句、一组 SQL 语句或整个程序。事务通常由高级数据库操纵语言或编程语言(如 SQL、C++ 或 Java)书写的用户程序的执行所引起,并用形如begin transaction和end transaction语句(或函数调用)来界定,事务由事务开始和事务结束之间执行的全体操作组成。

1.2 事务的特性(ACID)

事务具有四个重要特性,通常被称为 ACID 特性,这四个特性确保了数据库中数据的完整性和一致性。

  • 原子性(Atomicity):一个事务是一个不可分割的工作单位,事务中包括的操作要么都做,要么都不做。例如,在银行转账操作中,从账户 A 扣除金额和向账户 B 增加金额这两个操作必须作为一个整体执行,要么都成功完成,要么都因某种原因失败并回滚到初始状态,不存在只执行其中一个操作的情况。原子性通过数据库管理系统(DBMS)的日志记录和回滚机制来保证。当事务中的操作执行时,DBMS 会记录所有操作的日志,一旦事务需要回滚,就可以根据日志撤销已经执行的操作,确保数据状态的一致性。
  • 一致性(Consistency):事务必须使数据库从一个一致性状态变到另一个一致性状态。一致性与原子性密切相关,在事务开始前,数据库处于一致性状态,事务执行过程中,数据可能处于不一致状态,但事务完成后,数据库必须再次回到一致状态。以转账事务为例,在转账前后,涉及的两个账户的总金额应该保持不变,即满足业务规则的一致性要求。这意味着事务的执行必须遵循数据库中定义的完整性约束,如主键约束、外键约束、数据类型约束等。如果事务违反了这些约束,就无法使数据库达到一致状态,事务将被回滚。
  • 隔离性(Isolation):一个事务的执行不能被其他事务干扰,即一个事务内部的操作及使用的数据对并发的其他事务是隔离的,并发执行的各个事务之间不能互相干扰。在多用户并发访问数据库的场景下,多个事务可能同时对相同的数据进行操作,如果没有隔离机制,就可能出现数据不一致的问题。例如,一个事务正在读取某条数据,而另一个事务同时对该数据进行修改并提交,那么第一个事务读取到的数据可能是不一致的。隔离性通过事务隔离级别来控制,不同的隔离级别定义了事务之间的隔离程度,从低到高分别为读未提交(Read Uncommitted)、读已提交(Read Committed)、可重复读(Repeatable Read)和串行化(Serializable)。较高的隔离级别能更好地保证数据的一致性,但可能会对并发性能产生一定影响。
  • 持久性(Durability):持久性也称永久性,指一个事务一旦提交,它对数据库中数据的改变就应该是永久性的。接下来的其他操作或故障不应该对其有任何影响。即使系统在事务提交后立即崩溃或计算机重启,系统仍能保证该事务的处理结果。为了实现持久性,数据库系统通常使用事务日志来记录所有事务对数据的修改操作。当事务提交时,相关的日志记录会被持久化到存储设备(如磁盘)上。在系统故障恢复时,数据库系统可以通过重放事务日志来重新应用已经提交的事务,确保数据的持久性。

1.3 事务的状态

事务在其生命周期中会经历不同的状态,主要包括以下几种:

  • 活动状态(Active):事务开始执行后,进入活动状态。在这个状态下,事务中的操作正在被执行,数据库中的数据可能处于临时的不一致状态,但这些操作还未被提交或回滚。
  • 部分提交状态(Partially Committed):当事务中的所有操作都已成功执行完毕,但事务还未正式提交时,事务进入部分提交状态。此时,事务已经完成了对数据的修改,但这些修改还没有被持久化到数据库中,仍然有可能因为某些原因(如系统崩溃)导致事务无法最终提交。
  • 提交状态(Committed):当事务成功完成所有操作,并将对数据库的修改永久保存到数据库中后,事务进入提交状态。一旦事务处于提交状态,这些修改就对其他事务可见,并且无法再被回滚(除非使用特殊的恢复机制)。
  • 失败状态(Failed):如果在事务执行过程中发生了错误(如违反了完整性约束、系统故障等),导致事务无法正常完成,事务将进入失败状态。在失败状态下,事务需要进行回滚操作,以撤销对数据库所做的修改,使数据库恢复到事务开始前的状态。
  • 中止状态(Aborted):当事务处于失败状态并执行了回滚操作后,事务进入中止状态。此时,事务已经被撤销,数据库恢复到事务开始前的一致性状态,系统可以选择重启事务或放弃事务。

1.4 事务的分类

根据不同的标准,事务可以分为多种类型。

  • 根据事务模型划分
    • 显式事务(Explicit Transaction):又称用户自定义事务,指用显式的方式定义其开始和结束的事务。每个事务以BEGIN TRANSACTION语句显式开始,以COMMIT或ROLLBACK语句显式结束。在 SQL 标准里,虽然没有明确规定事务开始的语句形式,但在实际应用中,不同的数据库系统通常会有特定的语句来标记事务的开始。例如,在 MySQL 中,可以使用START TRANSACTION语句来开始一个显式事务。
    • 隐式事务(Implicit Transaction):每一条数据操作语句都自动地成为一个事务,事务的开始是隐式的,但会通过手动调用COMMIT或ROLLBACK语句显式结束。在一些数据库系统(如 SQL Server)中,可以通过设置相关选项(如Set Implicit Transaction On命令)来启用隐式事务模式。在这种模式下,当用户执行数据操作语句(如INSERT、UPDATE、DELETE等)时,系统会自动开启一个事务,在当前事务结束后又自动开启一个新事务。
    • 自动事务(Automatic Transaction):能够自动开启事务并且能够自动结束事务。每条单独的语句都是一个事务。事务执行过程中,若没有出现异常,事务则自动提交;当执行过程产生错误,事务则自动回滚。例如,在一些简单的数据库操作场景中,某些数据库引擎默认将每个单独的 SQL 语句视为一个自动事务,无需用户显式地管理事务的开始和结束。
  • 根据事务管理范围划分
    • 本地事务(Local Transaction):是传统的也是最常用的事务管理方式,只有单一的数据库,只能对单个数据库进行操作。资源管理器中的数据来源于同一个数据源,本地事务被限制在某种单独的数据资源内,这些数据资源通常提供本地事务功能,由数据资源本身控制,便于管理。例如,在一个独立的 MySQL 数据库实例中执行的事务就是本地事务。本地事务的优点是实现简单、性能较高,因为它只涉及一个数据库,不需要协调多个数据源之间的一致性。然而,本地事务无法解决分布式场景下的事务问题。
    • 分布式事务(Distributed Transaction):是在分布式系统中的本地事务,指在数据库上通过某种手段,实现支持跨数据库的事务支持。分布式事务具有简单一致性编程模型、跨域分布处理 ACID 保证。为了保证多个数据源数据的一致性,X/Open 组织定义了分布式事务处理 XA 规范,规定了分布式事务处理模型,即 DTP(Distributed Transaction Processing Reference Model)。该模型包括应用程序(AP)、事务管理器(TM)、资源管理器(RM)三个部分。其中,TM 负责统一的事务管理,协调各个 RM 之间的事务操作;RM 负责数据源数据的连接和操作;AP 用作用户自定义事务的处理逻辑。在分布式事务中,事务管理器通过 XA 接口使用二阶段提交协议与数据库进行交换,以确保所有参与事务的数据源要么全部提交事务,要么全部回滚事务。与本地事务相比,分布式事务的实现更为复杂,只有支持 XA 协议的资源才能参与分布式事务,且 XA 协议系统开销较大,在实际应用中需要慎重考虑是否需要使用分布式事务。例如,在一个涉及多个不同地理位置的数据库服务器协同工作的电子商务系统中,处理订单、库存和支付等操作时可能需要使用分布式事务来保证数据的一致性。
  • 根据用法和构造划分
    • 平面事务(Flat Transaction):指由一步或几步组成的单个或多个工作单元,是最简单的事务类型。若过程中有一步失败,则整个事务撤销。事务开始执行后,应用程序将执行一些操作,其中一些是永久性操作,成功的事务被提交,而失败的事务则被异常结束。事务以提交的形式结束时,数据库更新才会变成永久性的,并存于永久性存储中。例如,一个简单的数据库插入操作可以作为一个平面事务,如果插入过程中出现错误(如违反唯一约束),则整个插入操作将被回滚。
    • 嵌套事务(Nested Transaction):是指在一个事务内部包含其他事务的事务结构。嵌套事务允许在一个较大的事务中创建子事务,每个子事务都有自己的原子性、一致性、隔离性和持久性属性。子事务可以独立地提交或回滚,但其状态会影响父事务的状态。如果子事务回滚,父事务可能也需要回滚,具体取决于事务的设计和业务逻辑。嵌套事务在一些复杂的业务场景中非常有用,例如在一个涉及多个步骤的业务流程中,每个步骤可以作为一个子事务,便于对不同部分的操作进行独立管理和控制。
    • 链接事务(Chained Transaction):链接事务是一种特殊的事务类型,它将多个事务按照一定的顺序链接在一起,前一个事务的输出作为后一个事务的输入。在链接事务中,每个事务都依赖于前一个事务的成功执行,只有前一个事务成功提交后,后一个事务才能开始执行。这种事务类型常用于需要顺序执行多个相关操作的场景,确保整个业务流程的连续性和正确性。例如,在一个文件处理系统中,首先需要读取文件内容(第一个事务),然后根据读取的内容进行数据转换(第二个事务),最后将转换后的数据写入新文件(第三个事务),这三个事务可以通过链接事务的方式依次执行。
    • 长事务(Long - Lived Transaction):长事务是指执行时间较长的事务,通常涉及大量的数据操作或复杂的业务逻辑。长事务可能会占用数据库资源较长时间,对数据库的并发性能产生较大影响,因为在事务执行期间,可能会锁定大量的数据行或资源,导致其他事务等待。例如,在一个数据仓库环境中,进行大规模的数据加载和转换操作的事务可能会持续数小时甚至数天,这类事务就属于长事务。在处理长事务时,需要特别注意资源管理和并发控制,以避免出现性能问题和死锁等情况。

1.5 事务的使用场景

事务在许多实际应用场景中都起着至关重要的作用,以下是一些常见的应用场景:

  • 银行转账:在银行系统中,当用户进行转账操作时,需要从一个账户扣除相应金额,并向另一个账户增加相同金额。这两个操作必须作为一个事务来处理,以确保资金的一致性和完整性。如果在扣除操作完成后,由于系统故障等原因导致增加操作未能成功执行,事务将回滚,保证转出账户的资金不会无故减少。
  • 电商购物:在电子商务平台上,用户下单购买商品涉及多个操作,如扣除商品库存、更新订单状态、记录支付信息等。这些操作必须在一个事务中完成,以确保订单处理的一致性。如果在扣除库存后,由于网络问题导致支付信息记录失败,事务回滚,库存将恢复到原有数量,避免超卖现象的发生。
  • 库存管理:在企业的库存管理系统中,当进行商品入库或出库操作时,需要同时更新库存数量和相关的库存日志记录。这些操作需要在一个事务中执行,以保证库存数据的准确性。如果在更新库存数量后,日志记录失败,事务回滚,库存数量将恢复原状,防止数据不一致。
  • 数据库更新与日志记录:在一些数据库应用中,对数据的更新操作通常需要同时记录相关的日志信息,以便进行审计和故障恢复。将数据更新操作和日志记录操作放在一个事务中,可以确保两者的一致性。如果日志记录失败,数据更新也将被回滚,避免出现数据已更新但无日志记录的情况。

2. 并发控制与事务问题

2.1 并发控制的必要性

在多用户环境下,数据库系统需要支持多个事务并发执行,以提高系统的吞吐量和资源利用率。然而,并发执行的事务可能会相互干扰,导致数据不一致的问题。并发控制的目的就是确保在多个事务并发执行时,数据库能够保持数据的一致性和完整性,同时尽可能提高系统的并发性能。例如,在一个在线购物系统中,可能同时有多个用户进行商品购买操作,如果没有有效的并发控制,可能会出现库存超卖、订单数据不一致等问题。

2.2 并发事务带来的问题

并发事务可能导致以下几种常见的数据不一致问题:

  • 脏读(Dirty Read):一个事务读取到了另一个事务未提交的数据操作结果。例如,事务 T1 更新了某条数据,但尚未提交,此时事务 T2 读取了这条被更新后的数据。如果随后事务 T1 回滚了操作,那么事务 T2 读取到的数据就是无效的,这就产生了脏读问题。脏读会使事务读取到错误的数据,可能导致后续的业务逻辑出现错误。
  • 不可重复读(Non - Repeatable Read):一个事务对同一行数据重复读取两次,但是却得到了不同的结果。这是因为在两次读取之间,另一个事务对该数据进行了修改并提交。例如,事务 T1 首先读取了账户 A 的余额为 1000 元,然后事务 T2 对账户 A 进行了取款操作并提交,当事务 T1 再次读取账户 A 的余额时,得到的结果可能变为 800 元,这就导致了不可重复读问题。不可重复读会影响事务中数据的一致性和稳定性,可能导致业务逻辑出现错误判断。
  • 幻读(Phantom Read):事务在操作过程中进行两次查询,第二次查询的结果包含了第一次查询中未出现的数据或者缺少了第一次查询中出现的数据(这里并不要求两次查询的 SQL 语句相同)。这是因为在两次查询过程中有另外一个事务插入或删除了符合查询条件的数据。例如,事务 T1 查询所有价格大于 100 元的商品,得到了一个结果集。然后事务 T2 插入了一种新的价格大于 100 元的商品并提交。当事务 T1 再次执行相同的查询时,得到的结果集中包含了事务 T2 插入的新商品,这就是幻读问题。幻读会影响事务对数据集合的一致性感知,可能导致业务逻辑在处理数据集合时出现错误。
  • 丢失更新(Lost Update):两个事务都同时更新一行数据,一个事务对数据的更新把另一个事务对数据的更新覆盖了。这是因为系统没有执行任何的锁操作,因此并发事务并没有被隔离开来。例如,事务 T1 和事务 T2 同时读取了账户 A 的余额为 1000 元,事务 T1 将余额增加 100 元并提交,事务 T2 也将余额增加 200 元并提交。由于事务 T2 不知道事务 T1 已经对余额进行了更新,最终账户 A 的余额只增加了 200 元,而事务 T1 的更新被覆盖,这就产生了丢失更新问题。丢失更新会导致数据的更新操作不正确,破坏数据的完整性。

3. 事务隔离级别

3.1 事务隔离级别的概念

事务隔离级别定义了一个事务与其他并发事务之间的隔离程度,它决定了一个事务对其他事务的可见性以及对数据一致性的保证程度。不同的隔离级别通过不同的锁机制和并发控制策略来实现,从低到高分别为读未提交(Read Uncommitted)、读已提交(Read Committed)、可重复读(Repeatable Read)和串行化(Serializable)。较高的隔离级别能更好地保证数据的一致性,但可能会对并发性能产生一定影响,因此在实际应用中需要根据具体的业务需求和性能要求来选择合适的隔离级别。

3.2 四种事务隔离级别详解

  • 读未提交(Read Uncommitted):这是最低的隔离级别。在该级别下,一个事务可以读取到其他事务未提交的数据,即允许脏读。例如,事务 T1 更新了一条数据但未提交,事务 T2 此时可以读取到这条被更新后的数据。如果事务 T1 随后回滚,事务 T2 读取到的数据就是无效的。读未提交级别几乎没有对事务进行隔离,因此并发性能较高,但数据一致性无法得到有效保证。在实际应用中,读未提交级别很少被使用,因为它可能导致大量的数据不一致问题,只有在对数据一致性要求极低且对并发性能要求极高的特殊场景下才会考虑使用。
  • 读已提交(Read Committed):在该隔离级别下,事务只能读取到已经提交事务所产生的更改,不允许脏读。也就是说,当一个事务读取数据时,只能读取到其他事务已经提交的数据,而不会读取到未提交的数据。例如,事务 T1 更新数据并提交后,事务 T2 才能读取到更新后的数据。读已提交级别通过 “瞬间共享读锁” 和 “排他写锁” 实现。当一个事务读取数据时,会获取共享读锁,允许其他事务同时读取,但不允许其他事务进行写操作;当一个事务进行写操作时,会获取排他写锁,禁止其他事务同时进行读写操作。读已提交是许多数据库系统的默认隔离级别,它在一定程度上保证了数据的一致性,同时并发性能也相对较好。然而,在该
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值