关于Scikit-Learn中的SVM的一些总结

这篇博客总结了Scikit-Learn中的SVM,重点讨论了LinearSVC和SVC。LinearSVC主要用于线性分类问题,参数C影响模型复杂度。SVC则引入核函数进行非线性分类,C参数同样关键,并且可以使用不同的核函数。
摘要由CSDN通过智能技术生成

关于Scikit-Learn中的SVM的一些总结

一、LinearSVC

from sklearn.svm import LinearSVC

说明:这是一个用于解决线性分类问题的分类器。
其中的参数参考:

 LinearSVC(C=1.0, class_weight=None, dual=True,
           fit_intercept=True, intercept_scaling=1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值