高等数学基础之极限

本文探讨了数列极限的唯一性和有界性定理,以及函数极限的性质。同时,列举了求极限时常用的等价式,如x与sinx、tanx等的无穷小关系,并介绍了泰勒公式在极限计算中的应用。这些基础知识对于理解数学分析中的极限概念至关重要。
摘要由CSDN通过智能技术生成

一 数列的极限

定理一:数列极限的唯一性,即如果数列收敛,那么它的极限唯一。

定理二:收敛数列的有界性,即如果数列收敛,那么数列一定有界。

二 函数的极限

函数极限的性质

三 求极限常见的等价式

常用的等价无穷小,当x0的时候

x~sinx~tanx~arcsinx~arctanx~ln(1+x)~e^x-1;

⑵ (1+x)^a-1~ax,1-cosx ~ (x²)/2,a^x-1~xlna;

 x-sinx ~ x³/6,tanx - x ~ x³/3,x - ln(1+x)~ x²/2,arcsinx - x ~ x³/6,x-arctanx~x³/3.

总结:x,sinx,tanx,arcsinx,arctanx中的任意两个相减都得到三阶无穷小。

四 几个常用的泰勒公式以及个人对无穷小等价的对照

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值