LeetCode 52. N-Queens II 解题报告

LeetCode 52. N-Queens II 解题报告

题目描述

The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return the total number of distinct solutions.
8-queens


示例

1
return 1
4
return 2


限制条件

没有明确给出.


解题思路

我的思路:

对于N皇后的问题,求解的过程如下:
1.从i行的第j列开始,逐列判断是否能够放置棋子。
2.如果i行的j列能够放置棋子,我们就对i+1行重复第1步
3.如果i行所有列都放不了棋子,回到i-1行,从新的列开始重复第1步
4.如果在最后一行也找到了放棋子的列,我们就找到了一种解法,然后便尝试在这一行找新的能放棋子的列(寻找新的结果)
5.如果在第一行也找不到放棋子的列,就表示没有更多的解法,于是返回至今找到的解法的数目。
其中第3步体现了回溯的思想。

代码的实现就是按照以上的步骤分块进行:
1.对i行放置棋子:我们需要做的就是判断i行的每一列能不能放棋子,能就放置棋子,不能就尝试下一列,对应着步骤1。所以直接一个循环就行:j为列索引,board表示棋盘,是一维数组,索引表示行,数组元素表示列,即board[0] = 1表示在第0行的第1列放置了棋子;isValid函数用于判断能否在i行j列放棋子。
code1

2.当放不了棋子时,就有两种情况,(1)是第一行也放不了棋子,所以我们要结束寻找的过程,对应着步骤5,(2)是其它的行放不了棋子,我们就回到上一行,并且在上一行的新列开始重新放棋子,对应着步骤3。代码如下所示:NULLVALUE是预先设置的无效值,如果board[i]等于NULLVALUE就表明放不了棋子,else条件中的语句就是回溯的关键。
code2

3.当发现在最后一行也找到了放置棋子的列,我们就记录下这次结果,然后尝试在最后一行的剩下列找新的结果,对应着步骤4。代码如下:
这里写图片描述
通过把第二个代码放置于第三块代码之前,我们避免了判断最后一行是否能够放置棋子,如果前面的行不能放置棋子,就会进入到第二个代码,只有当前面的行都找到了放置位置,才会到达第三个代码,所以只要简单判断i是否等于最后一行即可。

第三个代码中最后的i++对应着步骤2。之所以放在这里,是因为第二跟第三个代码里的判断都是针对当前的i行,如果在第一个代码中就自增i,那么第二跟第三代码中判断的就不是当前的行,而是下一行,这显然是不合理的。

4.除了上面的三块代码,我们还留了一个尾巴,那就是isValid函数。在这个函数中,我们要判断i行j列是否能够放棋子,不能放的条件是,与之前的棋子同列或是与之前的棋子同对角线,满足两个条件之前就返回false。所以代码如下:
code4

最后把所有代码合并一起就成了解题的代码了,下面给出的代码里isValid函数的函数名跟参数会不同,是我后来为了好看一些修改了一下,关键的地方与上面讲的是一样。建议对着代码,好好体味整个运行过程。


代码

我的代码

class Solution {
public:
    int totalNQueens(int n) {
        const int INVALID = 1000;
        vector<int> board(n, INVALID);
        int i = 0;
        int j = 0;
        int result = 0;

        while (i < n) {
            while (j < n) {
                if (valid(board, i, j)) {
                    board[i] = j;
                    j = 0;
                    break;
                } else {
                    j++;
                }
            }

            if (board[i] == INVALID) {
                if (!i) {
                    break;
                }  else {
                    i--;
                    j = board[i] + 1;
                    board[i] = INVALID;
                    continue;
                }
            }

            if (i == n - 1) {
                result++;
                j = board[i];
                board[i] = INVALID;
                j++;
                continue;
            } 

            i++;
        }

        return result;
    }

    bool valid(vector<int> &b, int row, int col) {
        for (int i = 0; i < b.size(); i++)
            if ((b[i] == col) || (abs(row - i) == abs(col - b[i])))
                return false;
        return true;
    }    
};

总结

N皇后的题目,以前就见到过了好几遍,每次都没有认真花时间去想,这次总算是好好地把这道历史遗留问题给搞定了。相信下次再遇到,也能够完整的再实现一次。
搞定了这个坑,专心做其他的事了,努力努力!加油加油!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值