相似性搜索
KevinZwx
这个作者很懒,什么都没留下…
展开
-
LSB-Tree:Locality Sensitive B-Tree原理分析
LSB-Tree原理分析Locality Sensitive B-Tree是Yufei Tao、Ke Yi、Cheng Sheng、Panos Kalnis在发表于SIGMOD 2009的论文:Quality and Efficiency in High Dimensional Nearest Neighbor Search 中提出来的一种用来解决高维空间最近邻搜索的方法。在很多应用场景中,高维原创 2015-10-05 17:02:02 · 2403 阅读 · 0 评论 -
E2LSH的原理与实现
E2LSH一个是用来解决高维空间近邻搜索问题的工具包。E2LSH实现了R-NN问题的随机化解决方案,即(R, 1 −δ )-near neighbor:每个满足||q-p||2 ≤ R的点p被报告的概率至少为1 −δ。E2LSH的实现基于基本的LSH模式。原创 2015-10-19 21:16:03 · 9472 阅读 · 3 评论 -
Multi-Probe LSH原理分析
Multi-Probe LSHMulti-Probe LSH,即多探寻的局部敏感哈希,由Qin Lv、William Josephson、Zhe Wang、Moses Charikar、Kai Li在发表于VLDB 2007中的论文《MultiProbe LSH: Efficient Indexing for HighDimensional Similarity Search》中提出。该方法针对基本原创 2015-10-09 23:57:34 · 4665 阅读 · 2 评论