python
文章平均质量分 71
Candice1103
这个作者很懒,什么都没留下…
展开
-
Python实现Logistic 回归实例
logistic回归的一般过程: 1、收集数据:任何方式 2、准备数据:由于要计算距离,因此要求数据都是数值型的,另外结构化数据格式最佳。 3、分析数据:采用任一方是对数据进行分析 4、训练算法:大部分时间将用于训练,训练的目的为了找到最佳的分类回归系数 5、测试算法:一旦训练步骤完成,分类将会很快 6、使用算法:首先,我们需要输入一些数据,并将其转化成对应的结构化数值;接着基于训练好的原创 2016-01-21 21:20:09 · 1856 阅读 · 0 评论 -
python 从文本文件中解析数据
def file2matrix(filename): fr = open(filename) arrayOLines = fr.realines() returnMat = zeros((numbersOfLines,3)) classLabelVector = [] index = 0 for line in arrayOLines:原创 2016-01-02 10:03:21 · 4681 阅读 · 3 评论 -
python实现的 K-近邻算法代码详细解释
一、k近邻算法概述 k近邻算法采用测量不同特征值之间的距离方法进行分类。 优点:精度高、对异常值不敏感、无数据输入假定。 缺点:计算复杂度高、空间复杂度高。 适用数据范围:数值型和标称型。 二、算法一般流程 1、收集数据:可以使用任何方法。 2、准备数据:距离计算所需要的数值,最好是结构化的数据格式。 3、分析数据:可以使用原创 2015-12-30 15:37:37 · 1435 阅读 · 0 评论 -
python学习之决策树
决策树 k近邻算法可以完成很多分类任务,但是他最大的缺点就是无法给出数据的内在含义,决策树的优势就在于数据形式非常容易理解。 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关的特征数据。 缺点:可能产生过度匹配的问题。 使用数据类型:数值型和标称型。 1、决策树的构造 在构造决策树的时候,我们需要解决的第一个问题就是,在划分数据集的时候那些特征起着决定性作用。原创 2016-01-04 17:19:49 · 608 阅读 · 0 评论