- 博客(5)
- 收藏
- 关注
原创 大模型热潮中的“连接器”:深入解析模型上下文协议 (MCP)
模型上下文协议(MCP)是由Anthropic公司于2024年11月首次提出并开源的一项开放标准 1。它的核心目标是为AI助手(尤其是LLM)与各类数据源和工具系统之间建立安全、标准的双向连接 4。这些数据源可以包括内容存储库、业务工具、开发环境等 1。MCP的出现源于一个行业痛点:尽管LLM在推理和生成能力上取得了飞速进步,但它们往往与现实世界的数据和系统隔离开来,如同被困在信息孤岛中。
2025-05-14 09:37:37
795
原创 大语言模型提示词工程详尽实战指南
提示词工程(Prompt Engineering),顾名思义,是围绕“提示词”(Prompt)进行设计、构建和优化的过程 8。这里的“提示词”,在AI(特别是生成式AI)领域,指的是我们提供给模型的输提示词工程(Prompt Engineering),顾名思义,是围绕“提示词”(Prompt)进行设计、构建和优化的过程 8。这里的“提示词”,在AI(特别是生成式AI)领域,指的是我们提供给模型的输
2025-05-14 09:37:31
1023
原创 深入探索 Unix 与 Linux:历史、内核及发行版
Unix和Linux操作系统在计算世界中具有深远影响,广泛应用于服务器、智能手机和嵌入式设备等领域。Unix起源于20世纪60年代末的贝尔实验室,由Ken Thompson和Dennis Ritchie等人开发,其设计哲学包括“一切皆文件”和模块化设计。Unix通过C语言重写实现了可移植性,并衍生出System V和BSD两大阵营,经历了“Unix战争”后,POSIX标准的出现缓解了碎片化问题。Linux由Linus Torvalds于1991年开发,继承了Unix的设计理念,但采用GPL许可证和开源开发模
2025-05-13 08:47:25
812
原创 基于扣子(Coze.cn)与火山引擎构建高性能智能体的实践指南
本次通过模拟操作和分析现有资料,我们系统性地探讨了在 Coze.cn 平台上构建集成火山引擎知识库与工作流的 AI 智能体的过程。
2025-05-13 08:47:00
564
原创 机器学习、深度学习在数学建模的应用
数学建模与机器学习的融合正在重塑科学探索与工程实践的范式。传统数学模型虽逻辑严谨,但在处理复杂系统时往往面临瓶颈,而机器学习虽擅长数据拟合,却因其“黑箱”特性难以独立承担所有建模任务。两者的结合旨在构建既能精准捕捉数据规律,又遵循科学原理、具备可解释性与泛化能力的新一代模型。混合建模通过将机理模型与机器学习模型有机结合,实现了机理约束与数据驱动的辩证统一。物理信息机器学习(PIML)和物理信息神经网络(PINNs)等技术的引入,使得模型在数据稀疏时仍能通过物理约束做出合理推断。深度学习的关键架构,如卷积神经
2025-05-12 01:54:01
898
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人