深度学习
Candy_GL
这个作者很懒,什么都没留下…
展开
-
Ubuntu16.04环境下PyTorch简易安装教程
https://blog.csdn.net/red_stone1/article/details/78727096版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/red_stone1/article/details/78727096安装NVIDIA GPU显卡驱动如果需要安装cuda版本的PyTorch,电脑也有独立显卡的时候,一般需要更...转载 2019-06-14 19:08:24 · 5206 阅读 · 0 评论 -
Wasserstein GAN
转自:https://blog.csdn.net/shadow_guo/article/details/56003908来自Martin Arjovsky 100 等人的“Wasserstein GAN”。1. 简介本文关心的问题为无监督学习问题。学习11个概率分布意味着什么?传统的回答:学习概率密度。常通过定义密度(Pθ)θ∈Rd(Pθ)θ∈Rd的参数化(parameterize...转载 2018-07-21 16:25:08 · 1444 阅读 · 0 评论 -
DCGAN
转自:https://blog.csdn.net/liuxiao214/article/details/74502975首先是各种参考博客、链接等,表示感谢。1、参考博客1:地址——以下,开始正文。2017/12/12 更新 解决训练不收敛的问题。更新在最后面部分。1、DCGAN的简单总结稳定的深度卷积GAN 架构指南: 所有的pooling层使用步幅卷积(判别网...转载 2018-07-20 20:37:44 · 3536 阅读 · 5 评论 -
独家 | GAN大盘点,聊聊这些年的生成对抗网络 : LSGAN, WGAN, CGAN, infoGAN, EBGAN, BEGAN, VAE
转自:http://nooverfit.com/wp/%E7%8B%AC%E5%AE%B6%EF%BD%9Cgan%E5%A4%A7%E7%9B%98%E7%82%B9%EF%BC%8C%E8%81%8A%E8%81%8A%E8%BF%99%E4%BA%9B%E5%B9%B4%E7%9A%84%E7%94%9F%E6%88%90%E5%AF%B9%E6%8A%97%E7%BD%91%E7%BB%9...转载 2018-07-20 20:16:33 · 2472 阅读 · 0 评论 -
令人拍案叫绝的 Wasserstein GAN,彻底解决GAN训练不稳定问题
【新智元导读】 本文详细解析了最近在 reddit 的 Machine Learning 版引起热烈讨论的一篇论文Wassertein GAN,该论文提出的 WGAN 相比原始 GAN 的算法实现流程却只改了四点,但实现了彻底解决GAN训练不稳定,基本解决了 collapse mode 的问题等好处。论文下载地址:https://arxiv.org/abs/1701.07875在GAN的相...转载 2018-07-20 20:07:45 · 11276 阅读 · 0 评论 -
GAN原理,优缺点、应用总结
转自:https://blog.csdn.net/qq_25737169/article/details/78857724GAN原理,优缺点、应用总结本文已投稿至微信公众号–机器学习算法全栈工程师,欢迎关注 1.GAN的 ‘前世’?大家都知道GAN是Ian Goodfellow 2 014年放出的一篇开山之作,在深度学习界评价很高,可以说GAN的出现,给深度学习界...转载 2018-07-20 20:04:33 · 1264 阅读 · 0 评论 -
从基础概念到实现,小白如何快速入门PyTorch
转自:https://blog.csdn.net/Julialove102123/article/details/80487269PyTorch中文文档官网教材:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html中文教材:chenyuntc/pytorch-book 第一步 github...转载 2018-07-25 13:30:51 · 1902 阅读 · 0 评论 -
构建深度神经网络,我有20条「不成熟」的小建议
转自:https://zhuanlan.zhihu.com/p/39297187选自PCC,作者:Matt H、Daniel R,机器之心编译。本文介绍了构建深度神经网络的一些基本技巧,从通用技巧、神经网络调试和案例研究三方面展开。在我们的机器学习实验室中,我们已经在许多高性能的机器上进行了成千上万个小时的训练,积累了丰富的经验。在这个过程中,并不只有电脑学习到了很多的知识,事实上我们...转载 2018-07-23 22:41:52 · 238 阅读 · 0 评论 -
tf.tile()进行张量扩展
tf.tile()进行张量扩展tf.tile()应用于需要张量扩展的场景,具体说来就是: 如果现有一个形状如[width, height]的张量,需要得到一个基于原张量的,形状如[batch_size,width,height]的张量,其中每一个batch的内容都和原张量一模一样。tf.tile使用方法如:tile( input, multiples, name...转载 2018-07-23 12:23:34 · 592 阅读 · 0 评论 -
Win7安装Python Mayavi库
先下载所需依赖库均可以在http://www.lfd.uci.edu/~gohlke/pythonlibs/找到,本机安装为mayavi-4.3.1+vtk510-cp27-none-win_amd64.whlVTK-5.10.1+qt486-cp27-none-win_amd64traits-4.6.0-cp27-cp27m-win_amd64.whl进入CMD进行依赖库的安装pip insta...转载 2018-06-01 08:06:36 · 691 阅读 · 0 评论 -
深度学习之upsampling downsampling
通常采样指的是下采样,也就是对信号的抽取 。 连续-〉离散上采样是下采样的逆过程,也称增取样(Upsampling)或内插(Interpolating)。 离散-〉连续或加密!在深度学习中,下采样可用conv卷积实现;上采样可用deconv反卷积实现(自己理解,不知对不对?)转自链接:https://www.zhihu.com/question/43609045/answer/132235276...转载 2018-06-07 15:08:16 · 10241 阅读 · 0 评论 -
论文之Image-to-Image Translation with Conditional Adversarial Networks 2
转自:https://blog.csdn.net/KGzhang/article/details/77333398图像转换的条件对抗网络不仅学习了从输入图像到输出图像之间的映射,也学习了一个用来训练这个映射的损失函数。使得网络可以很好地应用到传统上需要不同损失结构的问题上。 图像处理,图形学,CV的很多问题都可以概括为将输入图像转化为相应的输出图像,文章就是提出了一个针对这些问题...转载 2018-06-06 15:51:43 · 537 阅读 · 0 评论 -
论文之《Image-to-Image Translation with Conditional Adversarial Networks》1
转自:https://blog.csdn.net/m0_37231012/article/details/70331114论文链接摘要我们研究条件对抗网络的目的是将之作为一种图片到图片“翻译”问题的通用的解决方法。这些网络不仅学习了从输入图像到输出图像的映射,还学习了训练这个映射的损失函数。这使得将这个一般方法解决通常需要完全不同的损失函数公式的问题成为了可能。我们证实了这个方法在从标签图来合成图...转载 2018-06-06 15:39:49 · 663 阅读 · 0 评论 -
令人拍案叫绝的Wasserstein GAN 及代码(WGAN两篇论文的中文详细介绍)---------好理解!!
作者:郑华滨链接:https://zhuanlan.zhihu.com/p/25071913来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 在GAN的相关研究如火如荼甚至可以说是泛滥的今天,一篇新鲜出炉的arXiv论文《Wassertein GAN》却在Reddit的Machine Learning频道火了,连Goodfellow都在帖子里和大家热烈讨论...转载 2018-07-21 20:52:45 · 3901 阅读 · 0 评论 -
W-GAN系 (Wasserstein GAN、 Improved WGAN)
习总结于国立台湾大学 :李宏毅老师Wasserstein GAN 、 Improved Training of Wasserstein GANs本文outline一句话介绍WGAN: Using Earth Mover’s Distance to evaluate two distribution Earth Mover‘s Distance(EMD) = Wassers...转载 2018-07-21 21:50:02 · 3840 阅读 · 0 评论 -
ImportError: No module named torchvision
转自:https://blog.csdn.net/miao0967020148/article/details/80400536torchvison:图片、视频数据和深度学习模型解决方案安装torchvision,参照官网 pip install torchvision安装指定版本pip install torchvision==0.1.8 Collectin...转载 2018-07-27 12:04:27 · 4478 阅读 · 0 评论 -
I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this T
转自:https://blog.csdn.net/zhaohaibo_/article/details/80573676遇到了这个问题,意思是你的 CPU 支持AVX AVX2 (可以加速CPU计算),但你安装的 TensorFlow 版本不支持解决:1. 如果是初学者 或者 没有太大计算速度的需求,在开头加上这两行忽略这个提示即可import osos.environ['TF_...转载 2019-04-24 18:55:32 · 1195 阅读 · 0 评论 -
Mac上安装tensorflow以及pycharm配置
转自:https://blog.csdn.net/myGFZ/article/details/791516351、Mac上安装tensorflow首先需要配置python环境,虽然Mac自带python2.7,但是做开发还是不够的,需要安装更高的版本,我这里安装的是python3.6.4,系统自带的版本最好不要去修改。2、python安装参考自博客:http://blog.csdn...转载 2019-04-24 18:46:40 · 3477 阅读 · 0 评论 -
如何调整一个不收敛的神经网络
转自:https://blog.csdn.net/wangdongwei0/article/details/81256423没错的,又是传送门大概分为以下几点:1、You Forgot to Normalize Your Data2、You Forgot to Check your Results3、You Forgot to Preprocess Your Data4、Y...转载 2019-03-03 21:36:09 · 1117 阅读 · 0 评论 -
深度学习训练时网络不收敛的原因分析总结
转自:https://blog.csdn.net/comway_Li/article/details/81878400很多同学会发现,为什么我训练网络的时候loss一直居高不下或者准确度时高时低,震荡趋势,一会到11,一会又0.1,不收敛。 又不知如何解决,博主总结了自己训练经验和看到的一些方法。首先你要保证训练的次数够多,不要以为一百两百次就会一直loss下降或者准确率一直提高,会有一点...转载 2019-03-03 21:34:48 · 5617 阅读 · 0 评论 -
简单谈谈Cross Entropy Loss
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/xg123321123/article/details/80781611写在前面分类问题和回归问题是监督学习的两大种类:分类问题的目标变量是离散的;回归问题的目标变量是连续的数值。 神经网络模型的效果及优化的目标是通过损失函数来定义的。回归问题解决的是对具体数值的预测。比如房价预测、...转载 2018-11-01 19:07:16 · 1149 阅读 · 0 评论 -
卷积神经网络系列之softmax,softmax loss和cross entropy的讲解
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u014380165/article/details/77284921我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等。虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变...转载 2018-11-01 19:01:22 · 239 阅读 · 0 评论 -
2张图理解resnet核心思想
版权声明:本文为博主原创文章,转载需注明出处。 https://blog.csdn.net/u013698770/article/details/57977482resnet是用于解决什么问题的实验结果表明,层数的增加会提高网络的学习效果。但是,实验结果也表明,如果只是单纯的增加网络的深度,网络的学习能力会下降。实验结果如下图所示:56层的学习误差比20层的学习误差还要大。因此,我们需...转载 2018-10-29 14:06:06 · 622 阅读 · 0 评论 -
tensorflow学习笔记--embedding_lookup()用法
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u013041398/article/details/60955847embedding_lookup( )的用法 关于tensorflow中embedding_lookup( )的用法,在Udacity的word2vec会涉及到,本文将通俗的进行解释。首先看一段网上的简单代码: ...转载 2018-09-20 11:18:17 · 539 阅读 · 0 评论 -
三大深度学习生成模型:VAE、GAN及其变种
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/heyc861221/article/details/80130968编者按:本书节选自图书《深度学习轻松学》第十章部分内容,书中以轻松直白的语言,生动详细地介绍了深层模型相关的基础知识,并深入剖析了算法的原理与本质。同时还配有大量案例与源码,帮助读者切实体会深度学习的核心思想和精妙之处。...转载 2018-09-03 21:50:17 · 3627 阅读 · 0 评论 -
2017CV技术报告:从3D物体重建到人体姿态估计
The M Tank 编辑了一份报告《A Year in Computer Vision》,记录了 2016 至 2017 年计算机视觉领域的研究成果,对开发者和研究人员来说是不可多得的一份详细材料。该材料共包括四大部分,在本文中机器之心对第三部分做了编译介绍,第一部分、第二部分和第四部分详见《 计算机视觉这一年:这是最全的一份 CV 技术报告 》、《 深度 | 2017 CV 技术报告之图像分...转载 2018-08-30 21:48:51 · 3108 阅读 · 1 评论 -
深度学习工程师的4个档次
转载:http://www.broadview.com.cn/article/794 最近不少朋友问我,转行做深度学习的话,能不能找到工作,能找到什么样的工作,能达到什么样的收入水平……这种问题其实不仅仅是存在与深度学习行业的入门和转型中的思考阶段了,在其它的行业和技术领域同样有这样的困惑和疑问。那么对于深度学习这个领域目前阶段的发展来说,一个工程师要具备什么样的素质才能算是达到...转载 2018-08-13 20:25:40 · 2809 阅读 · 0 评论 -
年薪20万、50万、100万的算法工程师,到底有什么区别?
公元七世纪,在车迟国国家气象局组织的一次求雨活动中,虎力、鹿力、羊力三位大仙成功地祈下甘霖,于水火中救了黎民。老国王虽然不明就里,却从此尊他们为国师,奉道教为圭臬。 本世纪,算法工程师们的境遇也差不多:早些年,信奉糙快猛主义的大佬们觉得他们饱食终日、无所用心,没工作只好在学校混博士,靠数据上的障眼法装神弄鬼。可是,随着去年AlphaGo大破李世石,大佬们在心底喊出“我操”的同时,慌不择路地...转载 2018-08-14 13:17:43 · 6437 阅读 · 0 评论 -
深度学习论文阅读路线图
转载自知乎:深度学习论文阅读路线图 Deep Learning Papers Reading Roadmap。 1 前言相信很多想入门深度学习的朋友都会遇到这个问题,就是应该看哪些论文。包括我自己,也是花费了大量的时间在寻找文章上。另一方面,对于一些已经入门的朋友,常常也需要了解一些和自己研究方向不同的方向的文章。因此,这里做了一个深度学习论文阅读路线图,也就是paper list...转载 2018-08-06 19:55:02 · 710 阅读 · 0 评论 -
python 对矩阵进行复制操作 np.repeat 与 np.tile区别
python 对矩阵进行复制操作 np.repeat 与 np.tile区别二者区别二者执行的是均是复制操作; np.repeat:复制的是多维数组的每一个元素;axis来控制复制的行和列 np.tile:复制的是多维数组本身; import numpy as np 通过help 查看基本的参数 help(np.repeat) help(np.tile)案例对比np.r...转载 2018-07-22 21:53:04 · 2392 阅读 · 0 评论 -
均方根误差(RMSE),平均绝对误差(MAE),标准差(Standard Deviation)的对比
转自:https://blog.csdn.net/capecape/article/details/78623897RMSERoot Mean Square Error,均方根误差是观测值与真值偏差的平方和与观测次数m比值的平方根。是用来衡量观测值同真值之间的偏差MAEMean Absolute Error ,平均绝对误差是绝对误差的平均值能更好地反映预测值误差的实际情况.标准差Standard ...转载 2018-06-06 15:31:52 · 9898 阅读 · 0 评论 -
论文之ResNet,DenseNet,以及残差家族
转自:http://blog.csdn.net/cv_family_z/article/details/50328175CVPR2016 https://github.com/KaimingHe/deep-residual-networks这是微软方面的最新研究成果, 在第六届ImageNet年度图像识别测试中,微软研究院的计算机图像识别系统在几个类别的测试中获得第一名。本文是解决超深度CNN网络...转载 2018-06-05 19:47:32 · 614 阅读 · 0 评论 -
Tensorflow的可视化工具Tensorboard的初步使用
转自:https://blog.csdn.net/sinat_33761963/article/details/62433234当使用Tensorflow训练大量深层的神经网络时,我们希望去跟踪神经网络的整个训练过程中的信息,比如迭代的过程中每一层参数是如何变化与分布的,比如每次循环参数更新后模型在测试集与训练集上的准确率是如何的,比如损失值的变化情况,等等。如果能在训练的过程中将一些信息加以记录...转载 2018-05-14 22:47:42 · 628 阅读 · 0 评论 -
Models in TensorFlow from GitHub
转载网址:http://note.youdao.com/share/?id=71216576910b7a6cd6f2a0f2ebf8faa2&type=note#/ —— 感谢AI研习社的分享Models in TensorFlow from GitHub图像处理/识别 1.PixelCNN &PixelRNN in TensorFlowTensorFlowimple...转载 2018-05-14 16:17:48 · 398 阅读 · 0 评论 -
FCN学习:Semantic Segmentation
原博:https://zhuanlan.zhihu.com/p/22976342本来这一篇是想写Faster-RCNN的,但是Faster-RCNN中使用了RPN(Region Proposal Network)替代Selective Search等产生候选区域的方法。RPN是一种全卷积网络,所以为了透彻理解这个网络,首先学习一下FCN(fully convolutional networks)F...转载 2018-05-07 14:13:13 · 684 阅读 · 1 评论 -
一步一步实现自己的GAN
生成式对抗网络是20年来机器学习领域最酷的想法。 ——Yann LeCun自从两年前蒙特利尔大学的Ian Goodfellow等人提出生成式对抗网络(Generative Adversarial Networks,GAN)的概念以来,GAN呈现出井喷式发展。这篇发布在O’Reilly上的文章中,作者向初学者进行了GAN基础知识答疑,并手把手教给大家如何用GAN创建可以生成手写数字的程序。本教程由两...转载 2018-03-10 19:24:28 · 628 阅读 · 1 评论 -
深度学习大神都推荐入门必须读完这9篇论文
大数据挖掘DT数据分析 公众号: datadwIntroduction 卷积神经网络CNN,虽然它听起来就像是生物学、数学和计算机的奇怪混杂产物,但在近些年的机器视觉领域,它是最具影响力的创新结果。随着Alex Krizhevsky开始使用神经网络,将分类错误率由26%降到15%并赢得2012年度ImageNet竞赛(相当于机器视觉界的奥林匹克)时,它就开始声名大噪了。从那时起,一...转载 2018-02-23 19:31:39 · 1854 阅读 · 0 评论 -
GAN学习指南:从原理入门到制作生成Demo
原地址:https://zhuanlan.zhihu.com/p/24767059?utm_source=weibo&utm_medium=social生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的一些论文,跑了一个GAN的代码,于是写了这篇文章来介绍一下GAN。本文主要分为三个部分:介绍原始的GAN的原理 同样非常重要的DCGAN的原理 如何在Tensorf...转载 2018-03-08 17:30:18 · 549 阅读 · 0 评论 -
卷积神经网络反向传播理论推导
本文首先简单介绍CNN的结构,并不作详细介绍,若需要了解推荐看CS231n课程笔记翻译:卷积神经网络笔记。本文只要讲解CNN的反向传播,CNN的反向传播,其实并不是大多所说的和全连接的BP类似,CNN的全连接部分的BP是与它相同,但是CNN中卷积--池化、池化--卷积部分的BP是不一样的,仔细推导,还是有很多细节地方需要思考的,比如1、在前向传播的过程中,卷积层的输入,是通过卷积核与前一层的输出...转载 2018-03-07 14:35:34 · 3014 阅读 · 0 评论 -
Tensorflow系列之TensorBoard:可视化学习
https://www.tensorflow.org/programmers_guide/summaries_and_tensorboard原创 2018-05-27 16:54:47 · 349 阅读 · 0 评论