0-1背包问题(c语言)

0-1背包问题:给定n种物品和一个背包。其中,物品i的重量是wi,对应的价格是Vi,背包的容量被限制为C,选择要装入背包的物品,使装入背包的物品的总价值最大。

实例解析:

   在选择装入背包的物品时,对每种物品的选择只有两种,即装入背包或不装入背包。但是不能将物品装入多次,也不能只装入物品的一部分。因此,称这个问题为0-1q问题。本实例采用动态规划的思想来解决这个问题。

    动态规划的基本思想是:将待解决的问题分解成若干个子问题,先求解子问题的解,然后从子问题的解中得到原问题的解。适用于动态规划的问题经分解之后的问题往往不是相互独立的,如果能保存已解决的子问题的答案,在需要时再去找已求得的答案,就可以避免大量重复计算。为了达到这个目的,可以用一个表来记录所有已解决的问题的答案,不管子问题以后是否会被用到,只要它被计算,就将其答案填入表中。这也是动态规划的核心思想。

   动态规划适用于求解最优化问题,0-1背包的问题正是一个典型的动态规划问题。为了描述这个问题程序中将使用下面的数组。

int value[NUM]={5,2,3,4,3,6,5,7,8,2};

int weight[NUM]={2,1,3,2,4,3,5,6,2,2};

inr maxvalue[NUM][CONTENT];

其中,NUM和CONTENT是两个宏,分别表示物品数和背包容量。数组value存储每个物品的价格,数组weight存储每个物品的重量。数组maxvalue存储动态规划过程中的最优解,其中,maxvalue[i][j]是背包容量为就,可选的物品为i,i+1,....,时0-1背包问题的最优解。本实例定义了kanpsack来求解最优数组maxvalue的值。其定义如下:

void knapsacks()

利用动态规划原理进行求解 0-1背包问题 已知背包的容量为b,有n种物件,其价格依次为w1,w2,...,wn;其容量依次为v1,v2,...,vn。 现要求在背包允许的容量内,装的物件价值达到最大,其数字模型为: max z=1 x1 + 6 x2 + 18 x3 + 22 x4 + 28 x5 1 x1 + 2 x2 + 5 x3 + 6 x4 + 7 x5 <=11 xi=0,1 i=1,2,3,4,5 S(i,j)=max{S(i-1,j),S(i-1,j-vi)+wi} S(0,j)=0 j>=0 S(i,j)=负无穷 j<0 i=1,w1=1,v1=1 S(1,1)=max{S(0,1),S(0,1-1)+1}=1 S(1,2)=max{S(0,2),S(0,2-1)+1}=1 S(1,3)=...=S(1,11)=1 i=2,w2=6,v2=2 S(2,1)=max{S(1,1),S(1,1-2)+6}=1 S(2,2)=max{S(1,1),S(1,2-2)+6}=6 S(2,3)=max{S(1,3),S(1,3-2)+6}=7 S(2,4)=...=S(2,11)=7 i=3,w3=18,v3=5 S(3,1)=max{S(2,1),S(2,1-5)+18}=1 S(3,2)=max{S(2,2),S(2,2-5)+18}=6 S(3,3)=max{S(2,3),S(2,3-5)+18}=7 S(3,4)=max{S(2,4),S(2,4-5)+18}=7 S(3,5)=max{S(2,5),S(2,5-5)+18}=18 S(3,6)=max{S(2,6),S(2,6-5)+18}=19 S(3,7)=max{S(2,7),S(2,7-5)+18}=24 S(3,8)=max{S(2,8),S(2,8-5)+18}=25 S(3,9)=S(3,10)=...=S(3,11)=25 i=4,w4=22,v4=6 S(4,1)=max{S(3,1),S(3,1-6)+22}=1 S(4,2)=max{S(3,2),S(3,2-6)+22}=6 S(4,3)=max{S(3,3),S(3,3-6)+22}=7 S(4,4)=max{S(3,4),S(3,4-6)+22}=7 S(4,5)=max{S(3,5),S(3,5-6)+22}=18 S(4,6)=max{S(3,6),S(3,6-6)+22}=22 S(4,7)=max{S(3,7),S(3,7-6)+22}=24 S(4,8)=max{S(3,7),S(3,8-6)+22}=38 S(4,9)=max{S(3,7),S(3,9-6)+22}=29 S(4,10)=max{S(3,7),S(3,10-6)+22}=29 S(4,11)=max{S(3,7),S(3,11-6)+22}=40 i=5,w5=28,v5=7 S(5,1)=max{S(4,1),S(4,1-7)+28}=1 S(5,2)=max{S(4,2),S(4,2-7)+28}=6 S(5,3)=max{S(4,3),S(4,3-7)+28}=7 S(5,4)=max{S(4,4),S(4,4-7)+28}=7 S(5,5)=max{S(4,5),S(4,5-7)+28}=18 S(5,6)=max{S(4,6),S(4,6-7)+28}=22 S(5,7)=max{S(4,7),S(4,7-7)+28}=28 S(5,8)=max{S(4,8),S(4,8-7)+28}=29 S(5,9)=max{S(4,9),S(4,9-7)+28}=34 S(5,10)=max{S(4,10),S(4,10-7)+28}=35 S(5,11)=max{S(4,11),S(4,11-7)+28}=40
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值