第三章 树
查找
-
静态查找——没有插入和删除,只有查找
// 顺序查找 时间复杂度O(n) int SequentialSearch ( StaticTable *Tbl, ElementTye K ) { /*在表Tbl[1]~Tbl[n]中查找关键字为K的数据元素*/ int i; Tbl->Element[0] = K; /*建立哨兵*/ for( i = Tbl->Length; Tbl->Element[i]!= K; i-- ); return i; /*查找成功返回所在单元下标;不成功返回0*/ } // 二分查找 时间复杂度O(logn) int BinarySearch ( StaticTable *Tbl, , ElementTye K ) { int left, right, mid, NotFound = -1; left = 1; right = Tbl->Length; while ( left <= right ) { mid = ( left + right ) / 2; if ( k < Tbl->Element[mid] ) { right = mid - 1; } else if ( k < Tbl->Element[mid] ) { left = mid + 1 } else { return mid; } } return NotFound; }
-
动态查找——除了查找,还有可能出现插入和删除
树的基本概念
1. 结点的度(Degree):结点的子树个数
2. 树的度:树的所有结点中最大的度数
3. 叶结点(Leaf):度为0的结点
4. 父结点(Parent):有子树的结点是其子树 的根结点的父结点
5. 子结点(Child):若A结点是B结点的父结 点,则称B结点是A结点的子结点;子结点也 称孩子结点
6. 兄弟结点(Sibling):具有同一父结点的各 结点彼此是兄弟结点。
7. 路径和路径长度:从结点n1到nk的路径为一 个结点序列n1 , n2 ,… , nk , ni是 ni+1的父结点
路径所包含边的个数为路径的长度。
9. 祖先结点(Ancestor):沿树根到某一结点路 径上的所有结点都是这个结点的祖先结点。
10. 子孙结点(Descendant):某一结点的子树 中的所有结点是这个结点的子孙。
11. 结点的层次(Level):规定根结点在1层, 其它任一结点的层数是其父结点的层数加1。
12. 树的深度(Depth):树中所有结点中的最 大层次是这棵树的深度。
二叉树
二叉树的类型
- 空二叉树
- 只有一个根结点二叉树
- 斜二叉树——只有左儿子或右儿子的二叉树
- 完全二