数据结构_树(1)

本文介绍了树的基本概念,重点讲解了二叉树的类型、性质、存储方式以及遍历方法,包括完全二叉树、平衡二叉树的概念,以及先序、中序、后序和层次遍历等。此外,提到了二叉树在实际中的应用,如查找、计算树高和判断同构等。
摘要由CSDN通过智能技术生成

第三章 树

查找
  • 静态查找——没有插入和删除,只有查找

    // 顺序查找 时间复杂度O(n)
    int SequentialSearch ( StaticTable *Tbl, ElementTye K )
    {
         
        /*在表Tbl[1]~Tbl[n]中查找关键字为K的数据元素*/
        int i;     
        Tbl->Element[0] = K;   /*建立哨兵*/  
        for( i = Tbl->Length; Tbl->Element[i]!= K; i-- );     
        return i; /*查找成功返回所在单元下标;不成功返回0*/ 
    }
    
    // 二分查找 时间复杂度O(logn)
    int BinarySearch ( StaticTable *Tbl, , ElementTye K )
    {
         
        int left, right, mid, NotFound = -1;
        
        left = 1;
        right = Tbl->Length;
        while ( left <= right )
        {
         
            mid = ( left + right ) / 2;
            if ( k < Tbl->Element[mid] )
            {
         
                right = mid - 1;
            } else if ( k < Tbl->Element[mid] )
            {
         
                left = mid + 1
            } else {
         
                return mid;
            }
        }
        return NotFound;
    }
    
  • 动态查找——除了查找,还有可能出现插入和删除

树的基本概念
1. 结点的度(Degree):结点的子树个数 
2. 树的度:树的所有结点中最大的度数 
3. 叶结点(Leaf):度为0的结点 
4. 父结点(Parent):有子树的结点是其子树 的根结点的父结点 
5. 子结点(Child):若A结点是B结点的父结 点,则称B结点是A结点的子结点;子结点也 称孩子结点 
6. 兄弟结点(Sibling):具有同一父结点的各 结点彼此是兄弟结点。 
7. 路径和路径长度:从结点n1到nk的路径为一 个结点序列n1 , n2 ,… , nk , ni是 ni+1的父结点
路径所包含边的个数为路径的长度。 
9.  祖先结点(Ancestor):沿树根到某一结点路 径上的所有结点都是这个结点的祖先结点。 
10. 子孙结点(Descendant):某一结点的子树 中的所有结点是这个结点的子孙。 
11. 结点的层次(Level):规定根结点在1层, 其它任一结点的层数是其父结点的层数加1。 
12. 树的深度(Depth):树中所有结点中的最 大层次是这棵树的深度。 

在这里插入图片描述

二叉树
二叉树的类型
  • 空二叉树
  • 只有一个根结点二叉树
  • 斜二叉树——只有左儿子或右儿子的二叉树
  • 完全二
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值