问题描述
训练场上n(1≤n≤50000)个高矮都不相同的士兵从左到右排成一行,依次编号为1,2,…,n。第i个士兵的身高H(i),由于采用特殊单位,H(i)满足1≤H(i)≤2000000000。设第i个士兵右侧最近的比他个高的士兵编号为j,则第i个士兵可看到在他的右侧比他矮的士兵的个数S(i)=j-i-1。(不考虑客观因素,比如视力范围等-,-)
求S(1)+S(2)+…+S(n)。
输入:
标准输入。
第一行为整数n,表示士兵的个数。
第二行n个整数,用一个空格隔开。分别表示编号为1,2。。。n的士兵的身高
输出:
S(1)+S(2)+…+S(n)的结果
例:
输入
6
10 3 7 4 12 2
输出
5
例子说明:
S(1) = 3
S(2) = 0
S(3) = 1
S(4) = 0
S(5) = 1
S(6) = 0
S(1)+S(2)+S(3)+S(4)+S(5)+S(6) = 3+0+1+0+1+0 = 5
解决思路
一个士兵可以看到比他矮的士兵 也就是说 矮的士兵可以被高的士兵看到 因此问题转化为 统计每个士兵被站在他前面且有机会看到该士兵的士兵总数,该模型可由栈来实现,我借用了C++的模板类vector来实现~
#include <cstdlib>
#include <iostream>
#include <vector>
using namespace std;
int sum(int cc[],int t){
vector<int> stu;
int j,ee;
int ad=0;
for(j=0;j<t-1;j++){
if(cc[j]>cc[j+1]) {
stu.push_back(cc[j]);
ad=ad+stu.size();
}
else{
while(ee=stu.size()>0){
if(stu.at(ee-1)>cc[j+1]){
ad=ad+stu.size();
break;
}
else {
stu.pop_back();
}
}
}
}
return ad;
}
int main(int argc, char *argv[])
{
int c,i,summer;
int a[c];
cout<< "请输入排队的人数以及每个人的身高:\n";
cin>>c;
for(i=0;i<c;i++)
{
cin>>a[i];
}
summer=sum(a,c);
cout<<"the whole number is\n"<<summer;
system("PAUSE");
return EXIT_SUCCESS;
}