斐波那契数列是一组经典的数列,以递推的方式定义,其规律为:第一项为0,第二项为1,后续项为前两项之和。用Python编写递归函数实现斐波那契数列是一个非常有趣的挑战,本篇文章将从头开始为你讲解Python递归函数的基本概念和实现方法,最终带你轻松实现斐波那契数列。废话不多说,我们开始吧!
一、递归函数的基础概念
- 什么是递归函数?
递归是指函数可以直接或间接调用自身的一种特殊形式。如果一个函数在函数体内部调用自身,那么这个函数就是递归函数。
- 递归函数的两个关键要素
(1)递归基:递归函数需要停止递归的条件。
(2)递推式:将规模较大的问题分解成规模更小的同种问题,通过不断缩小问题规模,最终缩减到递归基的情形。
- 递归函数的优缺点
递归函数具有以下优点:
(1)代码简洁,易于理解。
(2)实现的方法符合计算机科学最基本的思想——分治思想。
但是,递归函数也有缺点:
(1)会占用更多的内存空间。
(2)效率较低,与循环结构相比可能更慢。
二、斐波那契数列的实现
- 迭代实现
我们首先来看一下斐波那契数列的迭代实现,不需要使用递归函数。代码如下:
def fibonacci(num):
a, b = 0, 1
for i in range(