题目链接:最长上升子序列
解题思路
动态规划的难点在于定义数组和创建“状态转移方程”。
- 1. 定义height来存储数据,f[i]为以height[i]结尾的元素的最长上升子序列元素个数,初始时 将f所有内容全部初始化成1,因为子序列中至少包含一个元素。
- 2. 定义"状态转移方程" 一开始先将f中的数据全部置为1,因为最小的子序列长度为1 然后对于每个height[i],通过遍历height[0]~~height[i-1]之间的数据,如果在该区间中找 到一个height[j]比height[i]小的元素,开始比较f[j]+1和f[i]的大小,如果f[j]+1>f[j]则更新 f[i],
- 因此:
- 当height[i] > height[j]: f[i] = max(f[i], f[j]+1)
- 当height[i] <= height[j]:继续取下一个数据
代码
//广场上站着一支队伍,她们是来自全国各地的扭秧歌代表队,现在有她们的身高数据,
//请你帮忙找出身高依次递增的子序列。
//例如队伍的身高数据是(1、7、3、5、9、4、8),
//其中依次递增的子序列有(1、7), (1、3、5、9),(1、3、4、8)等,其中最长的长度为4。
//输入描述: 输入包含多组数据,每组数据第一行包含一个正整数n(1≤n≤1000)。
//紧接着第二行包含n个正整数m(1≤n≤10000),代表队伍中每位队员的身高
//输出描述: 对应每一组数据,输出最长递增子序列的长度。
//示例1 :
//输入 7 1 7 3 5 9 4
// 8 6 1 3 5 2 4 6
//输出 4 4
#include<iostream>
#include<vector>
#include<algorithm>
using namespace std;
int main()
{
int n;
while (cin >> n)
{
//接收用户输入的数据
vector<int> height(n, 0);
for (int i = 0; i < n; i++)
cin >> height[i];
// f用来保存状态转移方程的结果,
//f[i]表示以height[i]结尾的最长上升子序列所包含元素的个数
vector<int> f(n, 1);
int result = 1;
//子序列中的数据一个一个增加
for (int i = 1; i < n; i++)
{
//从0开始统计到i的位置,最长子序列长度
for (int j = 0; j < i; j++)
{
if (height[j] < height[i])
f[i] = max(f[i], f[j] + 1);
}
//获取从0到i位置的最长子序列长度
result = max(result, f[i]);
}
cout << result << endl;
}
return 0;
}