题意: 求
做法: 可以发现 在m,m*2,m*3 长度的区间内的K是 相等的分别为k ,k*2,k*3 所以我们可以在余数为0~m-1 的位置枚举起点,
然后以每个点作为终点求出cost 然后每到达一个可能为新的起点 维护最小前缀和,将该点作为新的起点或者还是继续作为终点
每次计算得到的cost-维护的最小前缀和便可以得到以i, i+m, i+m*2... 为起点的最大的连续子序列和。
复杂度O(n*m);
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int n,m,k;
ll a[300005];
int main()
{
cin>>n>>m>>k;
for(int i=0;i<n;i++)scanf("%lld",&a[i]);
ll res=0;
for(int i=0;i<m;i++) //枚举起点
{
ll mi=0;
ll sum=0;
for(int j=i;j<n;j++)
{
if(j%m==i)
{
mi=min(mi,sum);
sum-=k;
}
sum+=a[j];
res=max(res,sum-mi); // 算出以每个点为终点的cost
}
}
cout<<res<<endl;
return 0;
}