Educational Codeforces Round 69 D

17 篇文章 0 订阅
11 篇文章 0 订阅

题意: 求   (\sum_{i=l}^{r}a[i])-k[\frac{r-l+1}{m}]   

做法: 可以发现 在m,m*2,m*3 长度的区间内的K是 相等的分别为k ,k*2,k*3  所以我们可以在余数为0~m-1 的位置枚举起点,

然后以每个点作为终点求出cost 然后每到达一个可能为新的起点 维护最小前缀和,将该点作为新的起点或者还是继续作为终点

每次计算得到的cost-维护的最小前缀和便可以得到以i, i+m, i+m*2... 为起点的最大的连续子序列和。 

复杂度O(n*m);

#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<algorithm>
#include<cmath>
#define ll long long
using namespace std;
int n,m,k;
ll a[300005];
int main()
{
    cin>>n>>m>>k;
    for(int i=0;i<n;i++)scanf("%lld",&a[i]);
    ll res=0;
    for(int i=0;i<m;i++)  //枚举起点
    {
        ll mi=0;
        ll sum=0;
        for(int j=i;j<n;j++)
        {

            if(j%m==i)
            {
                mi=min(mi,sum);
                sum-=k;
            }
            sum+=a[j];
            res=max(res,sum-mi);   // 算出以每个点为终点的cost
        }
    }
    cout<<res<<endl;
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值