小猴子下落
时间限制:
3000 ms | 内存限制:
65535 KB
难度:
3
-
描述
-
有一颗二叉树,最大深度为D,且所有叶子的深度都相同。所有结点从左到右从上到下的编号为1,2,3,·····,2的D次方减1。在结点1处放一个小猴子,它会往下跑。每个内结点上都有一个开关,初始全部关闭,当每次有小猴子跑到一个开关上时,它的状态都会改变,当到达一个内结点时,如果开关关闭,小猴子往左走,否则往右走,直到走到叶子结点。
一些小猴子从结点1处开始往下跑,最后一个小猴儿会跑到哪里呢?
-
输入
- 输入二叉树叶子的深度D,和小猴子数目I,假设I不超过整棵树的叶子个数,D<=20.最终以 0 0 结尾 输出
- 输出第I个小猴子所在的叶子编号。 样例输入
-
4 2 3 4 0 0
样例输出
-
12 7
来源
/*
简单考察对二叉树的理解。每个小猴都会落在根节点上,因此前两个小猴必然是一个在左子树,一个在右子树。
一般地,只需看小猴编号的奇偶性,就能知道它是最终在哪棵子数中。例如,对于那些
落入根节点左子树的小猴来说,只需知道该小猴是第几个落在根的左子树里的,就可以
知道它下一步往左还是往右了。依次类推,直到小猴落在叶子上。
如果使用题目给出的编号I,则当I是奇数时,它是往左走的第(I+1)/2个小猴,当I是偶数时,
它是往右走的第I/2个小猴。这样,可以直接模拟最后一个小猴的路线。
*/
#include<cstdio>
int main()
{
int D,I,i,k;
while(scanf("%d %d",&D,&I)&&(D||I))
{
k=1;
for(i=1;i<=D-1;i++)
{
if(I&1) //I为奇数
{
I=(I+1)/2;
k = k*2;
}
else
{
I = I/2;
k = k*2+1;
}
}
printf("%d\n",k);
}
return 0;
}
//注释:I&1将I的二进制与1进行&运算,I是偶数为0,奇数为1.