android在所有布局外嵌套一层解决方法

本文解决在不同Activity中统一显示按钮的问题,通过在BaseActivity中创建方法,并利用Fragment和FrameLayout实现按钮在各界面右下角的稳定显示,避免直接使用addView导致的布局覆盖难题。

首先说下应用场景,最近项目有个需求在所有界面增加一个悬浮的按钮,但是不开启悬浮窗权限,就想到在每个activity中都添加一个button,这样就可以做到每个界面都有一个Button。

于是在BaseActivity中加了一个方法显示按钮,然后获取RootView,通过addView的方式加在右下角。
想法很简单操作起来也很简单,一顿操作写完了。测试的时候发现问题了,

1.所有Activity中的父布局你无法保证,怎么保证在右下角。
2.如果是LinearLayout,就没法保证覆盖在上面了。
3.如果是自定义ViewGroup获取其他布局也有上面两个问题。

我的想法是既然不能直接在根布局中addView那我就在外层嵌套一个Fragment,我的Button和原来的根布局加到自己创建的Fragment中,这样就实现了假的悬浮效果。下面看下主要代码:

//android.R.id.content就是根布局的parant
 ViewGroup rootView = (ViewGroup) mContext.findViewById(android.R.id.content);
  if (rootView != null && rootView.getChildAt(0) != null) {
                ViewGroup viewGroup = (ViewGroup) rootView.getChildAt(0);
                //这里为了方便,如果不是FrameLayout,直接在外面嵌套一层FrameLayout
                if (viewGroup instanceof FrameLayout) {
                    rootView.removeView(viewGroup);
                    FrameLayout frameLayout = new FrameLayout(mContext);
                    frameLayout.setLayoutParams(new ViewGroup.LayoutParams(ViewGroup.LayoutParams.MATCH_PARENT,
                            ViewGroup.LayoutParams.MATCH_PARENT));
                    frameLayout.addView(viewGroup);
                    rootView.addView(frameLayout);
                }
                (ViewGroup) rootView.getChildAt(0).addView(按钮);
                //.............省略位置操作
            }
内容概要:本文提出了一种基于非对称纳什谈判的多微网电能共享运行优化策略,旨在解决多个微电网系统间的能量协调利益分配问题。通过构建非对称纳什谈判模型,充分考虑各微网在能源供给、负荷需求及可再生能源出力等方面的差异性,实现公平且高效的电能共享机制。该策略以各微网成本最小化为目标,在满足功率平衡设备运行约束的前提下,利用博弈论方法达成多主体间的协商均衡,提升整体能源利用效率经济性。文中给出了详细的数学建模过程,并通过Matlab代基于非对称纳什谈判的多微网电能共享运行优化策略(Matlab代码实现)码实现仿真验证,展示了所提方法在降低运行成本、促进可再生能源消纳和增强系统自治能力方面的有效性。; 适合人群:具备一定电力系统基础知识和博弈论背景,熟悉Matlab编程,从事微电网、综合能源系统或分布式能源研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①研究多微网系统中电能共享协同优化的建模范式;②掌握非对称纳什谈判在能源交易利益分配中的建模求解方法;③实现基于博弈论的多主体能源管理系统设计仿真; 阅读建议:建议结合Matlab代码深入理解模型构建算法实现细节,重点关注目标函数设定、约束条件处理及博弈均衡求解过程,可进一步拓展至考虑不确定性或通信延迟的实际应用场景。
内容概要:本文是一篇关于激变变星(CV)光谱分析的实验报告,旨在通过“PHOENIX伴星+Koester白矮星+吸积盘幂律+加性多项式+可选消光”的联合拟合模型,对SDSS光谱数据进行连续谱分解,并提取发射线主导的残差光谱。实验流程包括数据预处理、伴星模板匹配、白矮星吸积盘成分拟合、加性多项式校正、加权最小二乘法全局拟合,以及构建减法、比值和高通滤波残差光谱,最终在残差上测量Balmer和He I/II等发射线的通量、FWHM、速度偏移和信噪比等参数。后续计划包括优化现有代码、批量化处理SDSSLAMOST数据,并用于训练diffusionWGAN模型,结合Cloudy模拟光谱开展模板匹配。; 适合人群:具备天文光谱数据处理基础,熟悉Python编程基本拟合算法的天体物理研究人员或高年本科生、研究生;有恒星光谱建模或机器学习应用经验者更佳; 使用场景及目标:①实现CV系统多成分连续谱的精确分解;②提取纯净发射线光谱用于物理参数反演;③为后续深度学习模型(如diffusion、WGAN)提供高质量训练样本标签数据; 阅读建议:理解各成分模板的选择依据拟合策略是关键,建议结合代码cv_continuum_joint_fit_v6_residuals_lines.py逐步调试,重点关注红端窗口拟合、加权最小二乘实现残差构造方式,并注意异常值(如宇宙射线)对拟合的影响及处理技巧。
内容概要:本文围绕基于FFT算法的MATLAB傅里叶3D可视化研究展开,通过Matlab代码实现信号的频域分析三维图形展示,帮助理解傅里叶变换在信号处理中的应用。文中详细介绍了快速傅里叶变换(FFT)的基本原理及其在周期信号分解中的实现方法,并利用MATLAB强大的绘图功能完成时域到频域的转换及基于FFT算法的MTALAB傅里叶3D可视化研究(Matlab代码实现)3D可视化呈现,便于直观分析信号成分频率特性。同时,文档还列举了多个相关科研方向的Matlab/Simulink仿真实例,涵盖信号处理、故障诊断、优化算法、电力系统等多个领域,展示了MATLAB在工程仿真科学研究中的广泛应用。; 适合人群:具备一定信号处理和MATLAB编程基础,从事电气工程、自动化、通信、机械故障诊断等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握FFT算法在实际信号分析中的应用方法;②学习如何利用MATLAB实现傅里叶数的三维可视化;③为开展信号处理、频谱分析、故障诊断等科研工作提供代码参考和技术支持;④拓展MATLAB在多领域仿真中的应用思路。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,逐步调试并理解每一步的实现逻辑,同时可参考文档末尾列出的其他研究案例,拓展研究视野,提升综合仿真能力。
你使用的是 `sentence-transformers` 库来加载 `Qwen3-Embedding-4B` 模型。但该模型并不是标准的 Sentence Transformer 格式,因此直接通过 `SentenceTransformer("Qwen/Qwen3-Embedding-4B")` 加载会导致错误,包括你之前遇到的: ``` huggingface_hub.errors.HFValidationError: Repo id must be in the form 'repo_name' or 'namespace/repo_name': '../../models/Qwen3-Embedding-4B'. Use `repo_type` argument if needed ``` --- ### ✅ 正确加载本地模型的修改方式如下: ```python from sentence_transformers import SentenceTransformer # 指定本地模型路径 model_path = "../../models/Qwen3-Embedding-4B" # 加载本地模型,禁用自动从 hub 下载 model = SentenceTransformer(model_path, trust_remote_code=True, local_files_only=True) ``` --- ### 📌 注意事项: 1. **确保模型路径正确**: - 该路径下应包含 `config.json`, `pytorch_model.bin`, `tokenizer_config.json`, `vocab.txt` 或 `tokenizer.json` 等必要文件。 2. **需要 `trust_remote_code=True`**: - Qwen 模型包含自定义代码,加载时必须设置 `trust_remote_code=True`。 3. **`local_files_only=True` 的作用**: - 防止程序尝试去 Hugging Face Hub 拉取模型,确保只使用本地路径。 --- ### 📦 如果你想先下载模型再离线加载: ```bash # 先在线下载模型 from sentence_transformers import SentenceTransformer model = SentenceTransformer("Qwen/Qwen3-Embedding-4B") model.save_to_hub("Qwen3-Embedding-4B-local") ``` 之后你可以离线加载: ```python model = SentenceTransformer("../../models/Qwen3-Embedding-4B", local_files_only=True, trust_remote_code=True) ``` --- ### ❗ 如果仍然报错: 检查: - `sentence-transformers` 版本是否支持远程代码加载(建议使用 v2.2.0 以上) - 模型是否完整,是否缺少 `modules.json` 等 sentence-transformers 特有文件(如果是标准的 ST 模型) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值