- 博客(2197)
- 收藏
- 关注
原创 从小白到大神:AI大模型学习资源全汇总,AI大模型学习路线非常详细收藏这一篇就够了
本文是一份AI大模型学习指南,系统介绍从基础概念到实战项目的完整学习路径。内容涵盖数学基础、Python编程、深度学习原理、Transformer模型及预训练技术等核心知识,并提供思维导图、视频教程、应用报告、电子书等免费学习资源。适合零基础小白入门,通过系统学习和实战项目,帮助读者掌握大模型技术,提升职场竞争力。
2025-12-16 15:09:09
1097
原创 100道高频大模型面试题,看我是如何手撕面试官 脚踢hr
提供一百道面试题并保证每一道题目的详细解答达到一千字是不太现实的,因为这将会是一个非常庞大的文档。不过,我可以为你提供一系列精心挑选的大模型相关面试题目,并简要说明每个问题的重点和考察方向,这样可以帮助你准备面试。大模型面试题集总结以上这些面试题目涵盖了从基础概念到高级技术的各个方面,对于准备大模型相关职位的面试非常有帮助。建议在准备过程中,不仅要熟悉这些问题的答案,还要尝试自己动手实践,这样才能真正掌握所学知识。希望这份面试题集能帮助你在面试中脱颖而出!
2024-08-16 16:06:29
1708
1
原创 跨越边界:我在转型AI产品经理的一年里所积累的成长与感悟
不知不觉,已经挂着AI产品经理的title过了一年多,盘点后竟然发现,这一年中居然从0到1做了4款AI应用产品,涉及内容、营销销售、私域运营等方向,忙碌而充实。今天就结合自己这一年多的AI转型实践,和大家分享下我关于AI产品经理的一些总结和思考。在这一年多的转型旅程中,我从一名传统产品经理成长为AI产品经理,这个过程充满了挑战与收获:知识体系的重构我系统地学习了机器学习、深度学习、自然语言处理等AI基础课程,弥补了技术知识的空白。
2024-08-02 18:07:37
2498
1
原创 从零开始认识大模型,入行必读!
大模型,顾名思义,就是具有庞大参数和复杂结构的机器学习模型。它能够处理海量的数据,从中提取出有价值的信息,为我们提供决策支持。与传统的机器学习模型相比,大模型具有更高的准确性、更强的泛化能力和更广泛的应用场景。
2024-06-24 13:47:24
2278
1
原创 大模型岗位薪资大揭秘:40万+年薪+全套学习资源免费领_大模型岗位薪资介绍
AI大模型岗位薪资高企,行业低谷中暗藏机遇 尽管AI行业处于低谷期,但大模型相关岗位薪资普遍突破40万+,蚂蚁金服、华为等企业校招岗位薪资优势明显。行业门槛较高,通常要求硕士以上学历,且技术复杂度导致学习难度大。当前AI行业类似早期电商,经历低谷后将迎来爆发。为助力从业者把握机遇,本文提供全套学习资源包,涵盖学习路线、行业报告、实战案例及面试题库,建议通过持续学习和实践提升竞争力,
2026-01-06 21:36:43
834
原创 十大汽车AI大模型盘点,非常详细收藏我这一篇就够了
上周,一辆搭载 FSD v14.2 的特斯拉 Model 3,从纽约出发,一路开到洛杉矶。历时 48 小时,跨越数千公里,经历了暴雨、夜路、复杂的城市拥堵和乡村土路。结果是:零接管。不是那种高速公路上的一路直行,而是真正意义上的端到端自动驾驶。
2026-01-06 21:33:47
374
原创 程序员必看:用LoRA技术实现低成本大模型多专家部署
LoRA技术助力小规模部署大模型:显存优化与多领域适配方案 本文探讨了个人和小公司部署大语言模型面临的显存资源瓶颈问题,重点介绍了LoRA(低秩适配)技术作为高效解决方案。传统全参数微调需要消耗N倍显存资源(如10个14B模型需90GB显存),而LoRA通过冻结预训练模型权重,仅训练低秩矩阵(通常仅需几十到几百MB),显著降低显存需求至原模型的1%以下。该技术支持动态加载多个轻量级专家适配器,实现领域专业化(如法律、代码等不同场景),同时降低模型维护成本,使基座模型更新时只需微调适配器而非全模型。文章还比较
2026-01-06 21:32:27
205
原创 15份报告回顾大模型2025年发展全貌,非常详细收藏我这一篇就够了
2022年底ChatGPT的出现引发了世界范围内对大模型的关注。2023年,是中国大模型的发展“元年”,百模大战拉开序幕。2024年,是企业真正开始使用大模型技术并从中获得业务价值的一年。2025年初,DeepSeek发布引发全球轰动,进一步降低企业大模型应用门槛,并开启“智能体元年”,AI Agent将迎来规模化落地浪潮。
2026-01-06 21:31:29
505
原创 把智能体当“新员工“带:一文搞懂大模型智能体运作流程
本文通过将智能体比作"新员工"的生动比喻,阐述了智能体的运作机制:首先通过系统提示词设定角色和基本信息(类似入职培训),然后配置工具(如办公设备)供其使用。智能体初期可能产出不完善的结果,需要根据反馈优化,类似新人需领导指导。文章介绍了ReAct Agent模型通过步骤规划提升性能的方法,并强调开发人员需优化提示词、工具描述和模型选择,以提高智能体处理复杂问题的能力。最后提供了大模型学习的多阶段路径和相关资源。
2026-01-06 21:30:12
123
原创 转行大模型产品经理:5大核心能力+6个月学习路线,月薪30K+不是梦_2026年零基础转行大模型产品经理必备
摘要 大模型产品经理正成为未来5年最具发展潜力的黄金职业,年薪可达50-120万元。该岗位需要技术理解力、数据洞察力、用户需求挖掘、商业化落地和跨团队协作五大核心能力。零基础学习者可通过三个阶段实现转型:1-2月夯实编程和AI基础,2-3月专攻大模型技术,1-2月进行项目实战。需避免三个常见误区:过度追求算法调参、忽视垂直领域积累以及缺乏实践。通过系统学习和持续实践,普通人完全可以在6个月内完成职业转型,抓住AI时代的发展机遇。
2026-01-05 20:15:48
1135
原创 RouteRAG:基于强化学习的混合检索RAG,让大模型推理成本降低30%+
RouteRAG:基于强化学习的动态混合检索RAG框架 摘要:RouteRAG提出了一种创新的强化学习框架,通过将文本检索和知识图谱检索统一为动作空间,实现动态路由决策。该方法解决了传统RAG在多跳问题中的局限性,采用两阶段训练策略优化检索过程。实验结果显示,RouteRAG在多个数据集上显著提升准确率(如HotpotQA达到71.8 EM),同时降低检索开销32%和总延迟24%,有效平衡了效果与成本。该框架通过可微动作调度,使模型能自适应决定检索时机和方式,为复杂问答任务提供了高效解决方案。
2026-01-05 20:14:30
694
原创 Meta天价收购“Claude套壳“产品,大模型创业泡沫还是真实机遇?程序员必藏!
Meta收购Manus事件反映了AI领域的泡沫化倾向。Manus本质上是Claude API的封装,技术含量有限,其成功主要依靠饥饿营销、KOL投放等营销手段。Meta此举显示其在AI产品开发上的焦虑,而非战略眼光。类似Manus的"wrapper"产品缺乏技术壁垒,商业模式依赖上游API提供商,难以持续。AI创业门槛降低,但真正有技术创新的项目仍稀缺,资本热潮中需辨别泡沫与真实机遇。
2026-01-05 20:13:29
384
原创 如何构建企业级「上下文图谱」非常详细收藏我这一篇就够了
最近一篇关于“上下文图谱(context graphs)”的文章,引发AI圈很多共鸣,其核心论点是:下一个万亿级平台,不会靠在既有记录型系统(systems of record)上“加点 AI”建出来,而得靠捕捉数据-->行动的**推理过程**。
2026-01-05 20:11:58
633
原创 小白也能学会:DeepSeek+RAGFlow构建个人私有知识库全攻略,建议收藏!
本文介绍了基于DeepSeek+RAGFlow构建私有知识库的完整方案,解决网页版在数据隐私、文件限制和维护方面的痛点。通过6个步骤实现本地部署:安装Ollama、拉取DeepSeek模型、配置Docker与RAGFlow等,并提供了常见问题解决方案。该方案支持完全离线环境下的自然语言查询,适用于处理敏感数据的企业和个人用户,同时提供了替代方案供选择。文章还包含详细的技术路线说明和实用经验分享,帮助用户快速搭建私有知识库系统。
2026-01-05 20:10:40
522
原创 大模型入门到精通:程序员必学技术指南,AI大模型学习路线,提升核心竞争力
文章介绍了大模型的基本概念、学习价值和多领域应用场景,探讨了大模型时代的机遇与挑战,包括护城河、价值积累点和竞争格局。文章还提供了系统的大模型学习资源,包括学习路线、行业报告、经典书籍等,帮助读者从基础认知到实际应用全面掌握大模型技术。
2026-01-04 19:26:28
1039
原创 人工智能:迈向认知自动化时代,全球AI大模型的十大趋势、战略应对与产业机会深度解析
2026年AI十大趋势前瞻:从认知自动化到节俭型创新 当前AI发展正经历从数据驱动到认知自动化的范式转变。本文系统梳理了最具影响力的十大AI趋势: AI智能体革命:从被动工具进化为自主执行的"数字员工",重构"洞察-决策-行动"闭环 节俭型AI崛起:在经济不确定性下,追求极致性价比的模型优化与成本控制 可信AI成为刚需:通过RAG、动态解码等技术体系解决"幻觉"问题,确保商业可靠性 多模态数据融合:释放90%未被利用的非结构化"暗数据&q
2026-01-04 19:25:12
644
原创 企业级智能体平台构建12大核心经验:从小白到专家的进阶指南
本文系统梳理了AI从1.0到3.0的演进历程,指出2025年已成为"智能体元年",AI正从被动应答转向主动执行。文章详细阐述了智能体的三大核心能力(自主规划、工具调用、多智能体协同)及关键组件,并基于实践经验总结了企业级智能体平台构建的十二大要点,包括数据规划、权限管控、测试体系等。作者强调智能体将重塑企业竞争力,建议采用渐进式发展路径,从简单场景逐步扩展到复杂决策,最终实现从"副驾驶"到"自主决策"的跨越。
2026-01-04 19:23:43
589
原创 收藏必备!2025年GitHub上最火的AI开源替代项目,闭源产品的完美平替
2025年GitHub热门AI开源项目盘点:8大领域替代方案 文章精选了2025年GitHub上最具代表性的8个AI开源替代项目,涵盖大语言模型、AI生成、智能体等前沿领域。重点包括:DeepSeek R1和Qwen 3作为开源大模型代表,Flux和Stable Diffusion 3.5在图像生成领域的表现,HunyuanVideo的视频生成能力,以及OpenManus、Cline等智能体工具。特别指出国产模型在中文理解上的优势,这些项目为开发者提供了功能强大且免费的开源选择,但作者强调它们与商业产品仍存
2026-01-04 19:22:26
622
原创 大模型生存指南:2025行业深度解析,收藏这份生态全景图
中国大模型行业正从"技术狂欢"转向"体系化较量",形成CBDG四维生态(消费者、企业、设备、政府)新范式。预计2026年市场规模突破700亿元,多模态大模型成为增长主力。企业竞争力体现在生态构建、技术研发等五大能力,未来趋势包括技术向具身智能演进、产业价值链重构等。头部企业通过差异化路径构建护城河,行业梯队已逐步固化,呈现"全栈巨头-技术新贵-垂直深耕者"的竞争格局。报告强调,大模型成功不再依赖单一技术突破,而在于能否构建生态协同的飞轮效应。
2026-01-04 19:21:02
602
原创 30岁转行AI大模型:零基础入门到高薪Offer的全攻略_30岁转行AI大模型,刚好赶上风口!
一位30岁传统行业从业者成功转型AI大模型领域技术人才的真实经历。从零开始学习Python、机器学习和深度学习框架,专攻Transformer架构和大模型微调,通过开发智能客服系统和参与开源项目积累实战经验。经过半年学习,成功获得AI算法工程师职位,薪资增长50%。文章分享了详细的学习路径、项目经验和面试技巧,强调30岁转行AI大模型不仅可行,而且正是抓住风口的最佳时机,并提供免费学习资源供读者参考。
2025-12-31 15:04:39
865
原创 LLM、RAG、微调、多模态,这些概念的「产品意义」是什么?
作为一名在AI浪潮里摸爬滚打的科技从业者,我发现我们陷入了一种奇怪的“术语崇拜”。会议室里充斥着缩写词,好像只要叠加了这些名词,产品就能一夜之间拥有灵魂。但真正走进用户的世界,你会发现,他们并不在乎这些字母组合。他们只在乎,在那通焦急的客服电话里,对方能不能听懂他们的委屈;在那些繁琐的文档堆里,工具能不能瞬间给出那个救命的答案。
2025-12-31 15:03:38
951
原创 知识图谱不完整?GR-Agent硬刚到底,推理性能飙升40%
过去 KGQA(Knowledge Graph Question Answering)的 benchmark 默认一个强假设:**图谱是完整的**——任意问题都能在同一张图里找到一条“直接”三元组答案。 结果模型只要会“检索”,就能“看起来会推理”。 例如问 “Justin Bieber 的叔叔是谁?”,只要图里直接有 ⟨Justin, hasUncle, Brad⟩,任何检索式 RAG 都能答对,**完全不需要推理**。
2025-12-31 15:02:28
846
原创 从Qwen3-30B-A3B看MoE架构:30B参数为何只激活3B?显存计算不再迷茫
本文以Qwen3-30B-A3B为例,详解MoE架构原理与显存计算方法。MoE模型虽每次仅激活3B参数,但所有30B参数仍需加载到显存。文章提供了不同量化精度的显存计算公式(FP32约120GB,FP16约60GB,INT8约30GB),并指出KV Cache等额外开销。通过实际部署验证,Qwen3-30B-A3B Q8_0量化版显存占用约34GB,与理论计算吻合。此外,文章对比了Thinking与Instruct版本的特点,建议根据任务复杂度选择。最后强调MoE节省的是计算量而非显存,帮助开发者正确规划大
2025-12-31 15:01:30
872
原创 Java开发者转型AI大模型完全指南:从零到专家的进阶路径_Java程序员转型大模型应用开发
文章详细解析Java开发者向AI大模型领域转型的技术路径与学习策略,包括转型优势分析、四种转型模式、核心技能提升策略、工程经验价值转化、实战项目建议及学习资源。强调Java开发者应"保Java攻AI",将传统工程思维与AI技术结合,成为稀缺的复合型人才,把握AI时代的职业发展机遇。
2025-12-30 16:53:41
1301
原创 【必收藏】2025中国AI大模型狂飙史:从技术突破到产业赋能的全面解析
2025年是中国AI大模型的历史性发展年,从DeepSeek开源引领,实现从跟跑到领跑的跨越。这一年见证了技术突破、政策支持、产业应用和商业落地的全面发展,确立了"技术自主、合规可控、场景驱动、生态协同"的发展路径,为智能经济发展与产业智能化升级注入强劲动力。
2025-12-30 16:52:11
1145
原创 破解长周期Agent落地难题:双Agent架构+状态恢复+测试验证全攻略
本文探讨长周期Agent落地失效的核心问题及解决方案。研究发现,任务切分粒度不准确导致上下文传递断裂是主要瓶颈。作者提出三重应对策略:采用双Agent架构(Initializer统筹任务拆解,Coding专注增量实现);基于Milvus向量数据库实现语义检索,支持跨会话状态恢复;引入测试驱动的功能验证闭环。通过LangGraph管理短期状态、Milvus存储长期记忆的技术组合,构建了"短期记忆+长期记忆"协同机制,有效解决了长周期任务的可连续性与可恢复性问题,为复杂Agent系统的落地提
2025-12-30 16:50:01
1001
原创 2026年AI应用开发如何选型?四大框架对比分析,建议程序员收藏学习
本文对比分析了Dify、Coze、N8N和LangChain四大AI应用开发框架,从技术门槛、运维复杂度、使用成本和应用场景四个维度进行评估。研究表明,不同框架适合不同规模和需求的企业,企业需根据自身技术能力和业务场景选择最适合的平台,没有最好的框架,只有最适合的解决方案。
2025-12-30 16:44:25
997
原创 【珍藏版】大模型系统学习指南:零基础到实战,助你快速成为AI工程师_2025最新AI大模型学习路线
文章提供了系统学习大模型的完整路线图,从数学基础、编程能力开始,逐步过渡到机器学习、深度学习,最终深入大模型技术。内容包括理论基础、实践项目、学习资源和社区参与。文章强调系统学习的重要性,避免零散学习,并提供了AGI大模型系统学习路线、640套报告合集、经典书籍和实战案例等资源,帮助读者全面掌握大模型技术,提升职业竞争力。
2025-12-29 16:06:10
1109
原创 2025年最值得收藏的GitHub大模型开源项目合集,小白也能轻松上手
文章精选了5个GitHub热门开源项目:Awesome知识库(370k+Star)、self-llm大模型入门指南、mindsDB AI查询引擎、Qlib AI量化投资平台和R&D-Agent智能体框架。这些项目覆盖大模型学习、数据查询、量化投资和AI研发等领域,帮助程序员和AI爱好者快速掌握技术,提升工作效率。
2025-12-29 16:04:30
576
原创 从零掌握多模态知识编辑:MMQAKE基准与Hybrid-DMKG框架实战指南
MMQAKE:首个多模态多跳问答知识编辑基准 本研究提出MMQAKE基准,创新性地评估多模态知识编辑在多跳问答中的表现。该基准突破性地考察中间推理步骤质量和对视觉改写的鲁棒性,填补了现有评估体系的空白。同时,研究团队开发了Hybrid-DMKG混合推理框架,通过动态多模态知识图谱实现精准推理,结合符号关系遍历和检索增强生成双路径,并引入反思决策模块协调不同推理结果。实验证明该方法显著优于现有技术,为复杂多模态推理提供了新思路。 (149字)
2025-12-29 16:03:31
624
原创 大模型训练的本质:定义什么是‘好‘,然后达到‘好‘
本文揭示了大型语言模型训练的核心框架:定义"好",然后达到"好"。从预训练(预测下一个词)到监督微调(模仿专家),再到人类反馈强化学习(满足人类偏好),最后到可验证奖励强化学习(追求客观正确),每个阶段都重新定义了"好"的标准并采用相应方法实现。这一框架不仅解释了LLM的演进历程,也反映了如何通过不同标准塑造AI的价值观。
2025-12-29 16:02:27
862
原创 RAG技术全栈教程:构建生产级智能问答系统(程序员必备,建议收藏)
本项目为开发者提供RAG技术全栈教程,涵盖基础概念、数据处理、索引构建、检索技术及评估方法等核心内容。通过体系化学习路径和实战项目,帮助开发者掌握大模型RAG应用开发技能,构建生产级智能问答系统。适合具备Python基础的AI工程师和产品开发者学习,从理论到实践全面提升RAG技术能力。
2025-12-29 16:01:20
535
原创 大模型学习全攻略:从数学基础到工程部署,小白到高手的完整指南_2026大模型入门学习教程(非常详细)
本文系统介绍大语言模型(LLM)学习路径,分为基础、科学家和工程师三大模块。基础模块涵盖数学、Python编程、神经网络和自然语言处理(NLP)等核心知识;科学家模块深入LLM架构、数据集构建、模型预训练、微调技术及评估方法;工程师模块聚焦模型部署、RAG应用和安全实践。全文提供完整学习路线图、视频教程和实战资源,适合从零基础到进阶的学习者,帮助读者系统掌握LLM技术并实现职业发展。
2025-12-28 18:03:43
936
原创 多模态大模型评估新突破:M3STR基准带你探索抽象视觉知识理解奥秘
本文提出M3STR新基准评估多模态大模型对抽象结构化知识的视觉理解能力。通过构建包含多模态思维导图的数据集,设计计数、检测和补全三类任务,评估26个主流MLLMs。结果显示:开源模型整体优于闭源API,Qwen2.5-VL-72B表现最佳;模型缩放定律依然适用,但当前MLLMs在抽象视觉理解上存在显著缺陷,小模型表现接近随机猜测。研究发现MLLMs难以有效利用多模态信息,移除部分视觉元素反而可能提升准确率。该研究揭示了MLLMs在结构化知识理解方面的能力局限,为未来改进指明了方向。
2025-12-28 18:02:40
766
原创 【大模型应用】收藏这篇就够了:工业标准文档知识图谱构建与本体感知KG-RAG框架
:工业标准文档知识图谱构建与本体感知KG-RAG框架本文提出工业标准文档知识图谱构建与KG-RAG应用方案。通过层级与原子命题本体建模将文档结构化,构建实体与关系嵌入形成同义词词典精炼图谱,设计统一图结构,并开发本体感知KG-RAG框架,结合文档层级与全局图谱实现精准知识检索与推理,提升大模型问答效果。
2025-12-28 18:01:46
572
原创 AI大模型学习路线图:从理论到实践,打造你的核心竞争力_大模型产品经理入门到精通
文章介绍毕昇BISHENG开源大模型平台及AI产品经理岗位,提供四阶段学习路线(初阶应用、高阶应用、模型训练、商业闭环)和七阶段学习路径,包含思维导图、学习手册、视频教程和实战案例,帮助程序员和小白从零掌握大模型应用开发全栈技能,提升职场竞争力。
2025-12-27 14:57:12
871
原创 RAG检索增强生成:提升大模型能力的核心技术指南
检索增强生成(RAG)是通过大模型结合外部数据的技术,解决了数据安全、成本高昂、领域知识局限、知识过时、幻觉问题和长尾知识不足等六大挑战。RAG架构包括入库准备、输入处理、检索(召回与排序)和生成(大模型与融合)四大模块,可应用于补全、问答、总结等生成式任务,在金融、医疗、法律等领域有广泛应用。
2025-12-27 14:56:14
606
原创 一文搞懂MCP、RAG、Agent:AI领域的黄金三角组合,程序员入门必看
文章详解了AI领域三大热门技术:MCP作为"万能转换器"统一工具接口标准;RAG通过检索增强生成减少AI"幻觉";Agent作为智能体可主动完成任务。三者形成"黄金三角",MCP负责连接工具,RAG提供知识支持,Agent执行任务,共同推动AI进化为智能助手,广泛应用于客服、办公、医疗等领域。
2025-12-27 14:55:16
986
原创 AI智能体学习新范式:从权重更新到Token空间学习,程序员必收藏!
《Token空间学习:AI持续进化的新范式》 文章提出突破性的AI持续学习方案——在token空间而非权重空间进行学习更新。通过让AI像人类记笔记一样更新上下文记忆,实现可解释、可移植且可控的知识积累。研究指出传统权重更新存在灾难性遗忘、数据隐私等问题,而token学习能通过"睡眠时间计算"和智能体自我管理记忆等创新方式解决这些痛点。未来发展方向可能是token空间与权重空间学习的结合,其中token记忆可蒸馏为权重参数以提高效率。这一新范式为构建真正持续进化的AI智能体提供了全新思路。
2025-12-27 14:53:32
851
原创 手把手教你搭建RAG系统:解决大模型幻觉问题,程序员必学收藏指南
本文分享了作者从头搭建RAG系统的实践经历。RAG通过检索增强生成解决大模型幻觉问题,提供可靠信息来源。文章详细介绍了系统搭建步骤(文档加载、文本分割、向量嵌入存储等)及实现过程中遇到的技术难题(数据更新、本地AI设置、嵌入模型选择等)。最终系统存在检索关键词生成能力不足、元数据利用不充分等局限。作者认为RAG只是权宜之计,期待AI在agent和上下文处理方面的突破。
2025-12-27 14:52:42
966
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅