- 博客(2273)
- 收藏
- 关注
原创 从小白到大神:AI大模型学习资源全汇总,AI大模型学习路线非常详细收藏这一篇就够了
本文是一份AI大模型学习指南,系统介绍从基础概念到实战项目的完整学习路径。内容涵盖数学基础、Python编程、深度学习原理、Transformer模型及预训练技术等核心知识,并提供思维导图、视频教程、应用报告、电子书等免费学习资源。适合零基础小白入门,通过系统学习和实战项目,帮助读者掌握大模型技术,提升职场竞争力。
2025-12-16 15:09:09
1153
原创 100道高频大模型面试题,看我是如何手撕面试官 脚踢hr
提供一百道面试题并保证每一道题目的详细解答达到一千字是不太现实的,因为这将会是一个非常庞大的文档。不过,我可以为你提供一系列精心挑选的大模型相关面试题目,并简要说明每个问题的重点和考察方向,这样可以帮助你准备面试。大模型面试题集总结以上这些面试题目涵盖了从基础概念到高级技术的各个方面,对于准备大模型相关职位的面试非常有帮助。建议在准备过程中,不仅要熟悉这些问题的答案,还要尝试自己动手实践,这样才能真正掌握所学知识。希望这份面试题集能帮助你在面试中脱颖而出!
2024-08-16 16:06:29
1720
1
原创 跨越边界:我在转型AI产品经理的一年里所积累的成长与感悟
不知不觉,已经挂着AI产品经理的title过了一年多,盘点后竟然发现,这一年中居然从0到1做了4款AI应用产品,涉及内容、营销销售、私域运营等方向,忙碌而充实。今天就结合自己这一年多的AI转型实践,和大家分享下我关于AI产品经理的一些总结和思考。在这一年多的转型旅程中,我从一名传统产品经理成长为AI产品经理,这个过程充满了挑战与收获:知识体系的重构我系统地学习了机器学习、深度学习、自然语言处理等AI基础课程,弥补了技术知识的空白。
2024-08-02 18:07:37
2522
1
原创 从零开始认识大模型,入行必读!
大模型,顾名思义,就是具有庞大参数和复杂结构的机器学习模型。它能够处理海量的数据,从中提取出有价值的信息,为我们提供决策支持。与传统的机器学习模型相比,大模型具有更高的准确性、更强的泛化能力和更广泛的应用场景。
2024-06-24 13:47:24
2291
1
原创 2025未来就业报告:AI岗位需求激增,普通人学习路线全攻略
世界经济论坛报告显示,到2030年AI领域将创造大量就业机会,同时淘汰部分传统岗位。中国AI人才需求将远超供应,一线城市岗位薪资丰厚。文章详细介绍了AI运营、算法工程师、大模型工程师、AI应用工程师和AI产品经理等五大热门岗位的职责与技能要求,并提供了普通人分阶段学习AI的路线图,帮助小白快速入门并实现职业转型。
2026-01-29 16:05:29
296
原创 LLAMA FACTORY:统一微调100+语言模型的利器,GitHub已获25K星标
LLAMA FACTORY是一个统一框架,用于高效微调100+种大语言模型。它整合了LoRA、QLoRA、GaLore等前沿微调技术,提供无需编码的Web界面LLAMA BOARD,降低微调门槛和计算成本。该框架支持预训练、指令微调和偏好优化等多种训练范式,已在GitHub获得25K+星标,使大模型微调变得"民主化",让更多人能轻松使用。
2026-01-29 16:04:26
107
原创 26届二本同学问想专注找大模型方向工作,二本生想进大模型领域?先看完这篇避坑指南
文章指出二本学生不应盲目跟风大模型方向,因为中小公司缺乏真实商业场景,大厂岗位多为业务开发而非算法研发,真正算法岗门槛极高。追热点学习的AI项目若仅调用接口无商业产出,面试中无优势。建议二本学生认清现实,合理规划职业路径。
2026-01-29 16:03:10
150
原创 Kimi K2.5开源新王:多模态+Agent集群+视觉编程,大模型学习新标杆
Kimi最新开源的K2.5模型具备多模态、编程与Agent三大核心能力,性能媲美顶级闭源模型。其原生视觉感知可实现图片/视频复刻网站,Agent集群支持多AI协作完成任务,Office办公深度优化,并推出Kimi Code开发工具。凭借SOTA的专家级知识推理与信息整合能力,K2.5标志着Kimi从对话助手向自主智能体的重大转变。
2026-01-29 16:01:57
159
原创 小米大模型校招岗位全解析:从入门到大模型开发者的成长指南
文章介绍小米集团2026届校招大模型相关岗位,包括大模型推理框架开发工程师、训练框架工程师和GPU容器研发工程师。强调这些岗位能接触万亿级参数模型,优化亿级用户产品,拥有万卡级GPU集群资源。
2026-01-29 16:00:36
128
原创 程序员如何学习大模型:完整学习路径与资源分享,薪资提升10%-20%_30+程序员转行做什么工作比较好?
AI大模型时代程序员转型指南 本文探讨了AI大模型时代程序员的职业发展路径,指出掌握大模型技术对职业发展的重要性。文章详细介绍了从基础编程到机器学习、大模型技术的完整学习路线,强调实践经验和持续学习的关键作用。针对当前大模型岗位高薪难求的市场现状,作者分享了包括视频教程、学习路线图、电子书籍、面试题目等全套104G学习资源包,助力程序员实现职业转型。这些资源由资深AI专家整理,涵盖从入门到进阶的完整知识体系,适合应届生、转行者和传统开发者等不同背景人群学习使用。
2026-01-27 14:32:22
956
原创 2025年最值得学习的Agent框架:LangGraph实战指南(含完整代码,建议收藏)
摘要: LangGraph是专为构建有状态Agent设计的底层操作系统,提供持久化执行、人机协同、记忆管理等五大核心能力。其架构基于状态流转与循环结构,支持Agent的"思考-行动-观察"闭环。开发者可通过Graph API(显式定义节点与边)或Functional API(Python装饰器)两种模式构建Agent,核心要素包括StateGraph、Nodes和Edges。示例展示了ReAct模式的实现,通过工具调用与状态管理完成复杂任务。适用于需长期运行、人工干预或高可观测性的智能体
2026-01-27 14:31:06
428
原创 大模型开发者必学!Agent Skills技术解析与实践案例(收藏级教程)
摘要:Agent Skills是Anthropic提出的渐进式提示词管理机制,通过元数据、指令和资源三层实现按需加载,显著降低Token消耗。本文以Claude Code为例,详细介绍了Skills的安装与使用流程,并通过"字幕转markdown笔记"案例演示其应用。Skills采用渐进式披露设计,先加载元数据目录,再按需调用具体指令,相比传统提示词方案更轻量高效。目前该技术已获主流AI工具支持,正发展成开放标准,成为大模型开发者构建智能体的实用工具。
2026-01-27 14:30:15
348
原创 ViLT视觉语言Transformer:彻底变革多模态预训练的高效架构
ViLT是一种创新的视觉-语言预训练模型,通过简化视觉特征提取过程实现高效多模态学习。与传统依赖CNN或区域监督的模型不同,ViLT仅使用轻量线性投影处理图像输入,与文本统一由Transformer进行模态交互。实验表明,ViLT推理速度比基于区域特征的模型快60倍,同时在下游任务中保持相当甚至更优性能。该模型采用图像-文本匹配和掩码语言建模进行预训练,并引入全词掩码和图像增强策略提升效果。ViLT的轻量化架构为多模态模型发展提供了新方向,推动研究向高效统一架构迈进。
2026-01-27 14:29:24
599
原创 从零开始学大模型:2025年国内外最新模型更新与趋势(收藏版)
2025年国内外大模型发展动态显示,国内外技术差距持续缩小,但国外在通用模型领域仍保持领先。国内GLM、MiniMax等开源模型及腾讯混元、可灵AI等闭源模型频繁更新,国外OpenAI、Google、Anthropic等公司则主导行业趋势。模型类型涵盖通用、推理及多模态(图像/视频生成),性能持续优化,如Gemini 3 Pro的图像处理能力和Claude Opus 4.5的智能体任务表现。整体呈现技术快速迭代、应用场景多元化的特点,国内外企业各具优势。
2026-01-27 14:28:35
557
原创 大模型应用开发零基础学习路线:《动手构建大模型》零基础进阶大模型应用开发实战指南
《动手构建大模型》是一本面向程序员和零基础读者的大模型开发实战指南。全书分为基础理论、核心技术和高阶应用三部分,系统讲解Transformer架构、提示工程、RAG技术、LangChain框架等核心知识,并提供Google Colab云端实践环境。通过项目驱动学习方式,涵盖从GPT-3.5 API翻译到医疗数据微调等实战案例,帮助读者快速掌握LLM应用开发全流程。书中包含新闻摘要器、客服机器人等真实场景项目,并详细讲解模型部署与优化技术,助力开发者成为AI工程师。配套104G学习资源包,包含视频教程、技术文
2026-01-26 17:56:40
788
原创 大模型学习黄金书单,告别刷教程,静心啃书才能真的搞懂AI
文章分享了作者从刷教程到系统学习大模型的转变经历,推荐了四类黄金书单:Python编程基础、深度学习知识、大模型基础知识及开发应用。强调大模型学习不能仅靠提示词和API,需要系统啃书才能真正理解并应用。这些书籍从入门到应用提供了完整学习路径,适合想深入掌握大模型技术的读者收藏学习。
2026-01-26 17:53:39
408
原创 大模型完全扫盲:LLM、Prompt工程、Agent与RAG全面解析
本文系统介绍了大语言模型(LLM)的基础概念与应用技术。首先通过猫狗分类案例解释了模型、训练、推理等AI基础概念,详述了大模型的涌现能力和泛化能力。重点讲解了Prompt工程的技巧,包括如何编写高质量Prompt、合理归纳提问以及运用心理暗示。随后解析了AI Agent作为用户与大模型中间人的工作原理,说明其处理复杂任务的优势。最后介绍了RAG技术通过外部数据库减少模型幻觉的方法,为程序员提供了全面的大模型入门指南。
2026-01-26 17:52:27
504
原创 LatentMAS:让AI智能体实现“脑电波“式协作,性能提升14.6%,速度提升4倍
LatentMAS框架革新多智能体协作模式,通过潜空间直接交换隐藏状态和KV Cache,绕过传统文本交流的低效环节。该技术突破包含两大创新:自回归潜思维生成实现"无语言思考",线性对齐矩阵解决输入输出分布不一致问题。实验数据验证其显著优势:在9项基准测试中准确率提升最高达14.6%,Token消耗降低70.8%-83.7%,推理速度提升4倍以上。这项研究打破了LLM必须输出文本的思维定式,为多智能体系统开辟了高效协作新范式。 (注:摘要严格控制在150字内,涵盖研究动机、技术亮点、实验
2026-01-26 17:50:53
599
原创 年底大模型冲刺:热门国产模型技术亮点全解析,小白到程序员都能学!
文章介绍了年底国产大模型厂商的最新成果,包括Qwen3-TTS、GLM-4.7-Flash、LongCat-Flash-Thinking-2601、Baichuan-M3等多个热门模型的技术特点。这些模型在语音合成、多模态处理、医疗决策、智能体思维等方面各有创新,展示了国产大模型技术的快速发展和多样化应用场景。
2026-01-26 17:39:47
522
原创 零基础转行AI大模型:我的自学经验分享(程序员必备,建议收藏)___转行人工智能大模型
文章讲述了农学背景的王东从销售工作转型学习AI大模型的故事。他通过自学Python、数据库、机器学习等技能,经历多次面试后成功获得AI岗位工作。作者分享了学习路径、面试经验和职场心得,强调了抓住机会和找到适合自己领域的重要性。最后提供了AI大模型学习资料的获取方式,帮助有兴趣的读者入门AI领域。
2026-01-25 18:55:23
626
原创 大模型构建知识图谱的挑战与解决方案:判别式模型的优势
本文探讨了大语言模型构建知识图谱的根本性挑战,指出生成式模型因文本生成机制与结构化知识需求不匹配而存在幻觉、碎片化等问题。作者提出判别式模型更适合结构化提取,强调断言知识图谱作为可验证基础的重要性,并介绍通过层级关系、规则推理等策略增强图谱的方法。技术选型应基于下游任务需求,平衡判别式模型的精确性和生成式模型的灵活性。文章为构建生产级知识图谱提供了系统性解决方案。
2026-01-25 18:53:39
452
原创 深入理解LLM三大核心技术:Function Calling、MCP与A2A实战指南
本文深入解析了大型语言模型(LLM)的三大核心技术:Function Calling通过监督微调实现意图识别和参数提取;MCP作为标准化工具交互协议;A2A支持AI智能体协作。重点阐述了Function Calling的训练方法,包括数据集构建、基础模型选择和微调过程,并详细说明了函数描述的标准化格式。同时提供了系统学习LLM的路径和资源,帮助开发者快速掌握相关技术。文章还解答了常见问题,如训练数据格式、工具接入方法等,为LLM技术实践提供了实用指导。
2026-01-25 18:52:34
552
原创 深入理解Agentic RAG:从检索增强到智能体驱动的技术演进(建议收藏)
Agentic RAG(智能体检索增强生成)是传统RAG技术的进阶版本,通过嵌入AI智能体实现自主决策、交互式扩展和反馈修正等能力。该技术采用反思、规划、工具使用和多体协作四大模式,使AI系统能像研究员一样解决复杂问题。研究显示,交互深度成为提升AI性能的新维度,支持智能体进行多达600次工具调用。目前Agentic RAG已发展出自适应RAG、纠错型RAG和图增强Agent等多种架构,尽管在协调冲突和资源消耗方面仍存挑战,但其动态推理能力正推动AI从对话助手向数字研究员转变,成为下一代AI系统的核心基石。
2026-01-25 18:51:02
492
原创 企业级大模型落地宝典:精准选模+高效开发+持续优化(建议收藏)
企业落地大模型应用需聚焦三大核心要素:精准选模、开发平台搭建和合作伙伴选择。首先要选择与业务高度匹配的模型,考虑性能、成本和场景适配度;其次要构建覆盖全生命周期的开发平台,采用低代码工具简化流程;最后需选择经验丰富的AI厂商合作。实施过程中需统筹资源投入、数据治理、算力准备和效果评估,通过自动化流程降低开发难度,确保大模型安全高效落地并持续优化。建议采用一站式服务平台,整合模型开发、调优、测试等环节,同时关注数据安全和性能监控,实现从POC到上线的全流程管理。
2026-01-25 18:49:54
473
原创 想转行AI产品经理?这份指南建议收藏!从B端到AI的转型经验分享
AI产品经理需具备产品基本功、行业经验和AI技术认知。通过对100个招聘需求分析,核心要求包括:需求分析、产品设计、跨部门协作、AI技术知识等。AI产业链分为算力、数据、模型和应用四层,各层级产品经理职责不同。转行者需掌握AI基础知识,参与项目实践,持续学习行业动态。从初级到高级的职业发展路径清晰,关键在于积累实战经验并保持技术敏感度。
2026-01-24 15:36:23
581
原创 大模型架构师必备:Agent与Workflow核心技术与实践,建议收藏
智能体与工作流在大模型应用中的差异与协同 本文系统分析了智能体(Agent)与工作流(Workflow)的核心区别及融合方式,提出了构建高效Agentic系统的方法论。工作流强调预设流程的确定性执行,适用于规则明确的业务场景;而智能体具备自主决策能力,能动态调整执行路径应对复杂需求。文章详细阐述了七种工作流类型(增强型LLM、提示词链接、路由、并行、编排工作者、评估者-优化者和自主智能体)的特点及适用场景,并对比了N8N、Dify和Coze等开源框架。通过合理结合工作流的标准化与智能体的灵活性,可构建稳定可
2026-01-24 15:35:35
479
原创 大模型训练七步法:系统掌握分布式训练与产业级开发
本文系统阐述了大模型训练的七大核心步骤:数据准备、模型定义、环境配置、训练配置、模型训练、验证测试及模型部署,强调这是一个需要综合考量的系统工程。文章推荐《人工智能大模型:动手训练大模型基础》一书,认为其理论实践结合的内容适合各层次学习者。同时提供从入门到进阶的完整学习路径,包含104G学习资源包、100套商业化方案、200本PDF书籍等资料,帮助读者掌握大模型开发全流程技术,包括系统设计、提示工程、平台开发、知识库应用等关键能力。
2026-01-24 15:34:38
478
原创 EO-1具身智能模型开源:3B参数统一架构,真实机器人长时域任务表现优异
EO-1是一款开源的3B参数具身智能VLA模型,采用统一的decoder-only Transformer架构,结合离散自回归解码与连续流匹配去噪技术。通过视觉-文本-动作交织预训练,实现了感知、规划、推理和行动的无缝融合。该模型在长时域灵巧任务和开阔世界具身泛化方面表现优异,支持"思考-行动-观察-再思考"的自然流程,适用于多种真实机器人平台。EO-1在ERQA、LIBERO等基准测试中超越现有开源模型,展现了强大的多模态理解和精细操作能力。
2026-01-24 15:33:05
546
原创 多模态RAG实战教程:收藏级大模型技术详解,助你掌握未来发展方向
本文探讨了多模态RAG技术的现状与挑战,指出目前主要存在模态对齐和文本中间转换两种实现方式。尽管多模态RAG被视为未来发展方向,但当前技术仍处于初级阶段,面临模态融合、文档处理等工程化难题。文章通过分析CLIP模型,揭示了多模态RAG的三种实现路径:同模态检索、跨模态对齐和文本中转。作者强调不同场景需要差异化解决方案,并指出现有"多模态"模型实际多为两模态转换的局限性。最后提供了AI大模型学习资源,涵盖从系统设计到商业化落地的完整知识体系。
2026-01-24 15:20:49
474
原创 转行大模型开发必备:知识体系、能力要求与实战指南,非常详细收藏我这一篇就够了
本文详细解析转行大模型开发所需的知识体系与学习路径,涵盖编程语言、数学基础、机器学习、NLP等核心技能,并从入门到专业阶段规划了技术路线。通过明确各项技术的掌握程度,结合医疗行业应用案例和岗位需求数据,为转行者提供系统性的指导,帮助零基础人士高效掌握大模型开发能力,实现职业转型。
2026-01-21 20:27:04
1079
原创 从简单疑问到深刻洞察:大模型“出版“的可能性探索(收藏版)
本文探讨了将LLM大模型类比书籍出版的可能性。研究发现出版本质是认证、分发和变现三要素,而LLM在呈现多元视角和专用模型价值方面存在挑战。最终提出"服务出版"新模式:通用大模型+专业内容+机构背书的交互式知识服务。核心发现包括:出版本质是社会认可而非技术认证;专用模型在窄领域缺乏意义;真正价值在于基于通用模型的专业知识服务。这一思考揭示了AI时代知识传播的新形态,展现了从简单类比到深度认知的思维进化过程。
2026-01-21 20:25:58
489
原创 AI智能体架构全景解析:从基础到应用的完整指南
摘要: 本文系统综述了AI智能体架构的设计与应用,围绕审议推理、规划控制和工具交互三大维度展开分析。文章提出统一分类框架,涵盖智能体组件、编排模式和部署场景,并探讨了延迟与准确性、自主性与可控性等关键设计权衡。研究指出当前面临工具验证、记忆管理、决策可解释性等核心挑战,强调真实工作负载下评估的重要性。随着AI智能体从写作辅助转向工作流自动化,其在企业系统、Web操作等场景的应用凸显了安全防护和可靠性验证的迫切需求,为理解大模型在实际应用中的架构设计提供了重要参考。
2026-01-21 20:24:48
613
原创 大模型上下文技术革命:从128K到百万tokens,解锁AI无限可能
大模型上下文长度正从128K向百万tokens突破,带来AI能力的质变。通过高效注意力算法、分级存储等技术攻克"内存墙",使AI能处理更复杂信息。这一突破将重塑企业知识管理、代码开发、创作研究等领域,使AI从简单对话转向"马拉松"式任务处理。尽管面临成本、评估和安全等挑战,但"无限上下文"和AI主动感知的未来已清晰可见,标志着人机交互新纪元的到来。
2026-01-21 20:23:54
561
原创 大模型学习宝典:10个Agent实战项目+90天系统学习路径,助你轻松拿下AI产品经理面试
【AI大模型学习资源合集】提供从入门到进阶的系统学习路径,包含104G免费学习资料包,覆盖提示词工程、模型微调、多模态应用等核心技能。资源包含100套商业化方案、200本专业书籍、实战项目案例及面试题库,帮助学习者掌握大模型全栈开发能力,适合产品经理、开发者等不同角色快速提升AI技能。所有资料可通过扫描二维码免费获取。
2026-01-21 20:22:49
269
原创 大模型开发薪资揭秘:53.7%开发者月薪超50K,2026年将再增10%!本科平均41.9K,1-3年经验可达40K
大模型开发人才需求旺盛,53.7%从业者月薪超50K,2025年预计增长10%。华为等企业招聘的大模型工程师需掌握分布式算法、CPU/GPU优化等核心技术。为应对人才缺口,提供完整学习资料包,包含提示词工程、RAG系统、智能体开发等核心内容,帮助零基础到进阶者90天内掌握大模型技术。学习路径分为初阶应用、高阶应用和模型训练三个阶段,涵盖Prompt工程、向量检索等关键技术,助力实现职业跃迁。
2026-01-20 09:42:53
986
原创 2025年AI大模型企业落地全景图:从试验项目到战略行动的蜕变之路
2025年企业AI部署呈现四大趋势:预算持续增长并纳入核心IT支出;多模型策略成为主流,OpenAI、谷歌和Anthropic领先;采购流程日趋规范;企业从自建转向采购成品应用。软件开发成为首个"杀手级"AI应用场景。报告显示,AI部署已从试验项目转变为战略行动,75%的企业预算增幅显著。多模型组合成为常态,不同模型针对特定任务表现差异明显。市场形态接近传统软件但变化节奏更快,企业更注重成本与性能平衡,同时模型切换成本随工作流复杂度提升而增加。
2026-01-20 09:40:08
519
原创 大模型训练史:从“专精“到“都懂“再到“听话“的螺旋进化 | 程序员必学收藏指南
大语言模型训练经历了从专精到通用再到智能助手的螺旋式演进:早期BERT采用预训练+微调模式;中期GPT-3追求无监督学习但难控制;当前ChatGPT通过指令微调和人类反馈强化学习(RLHF),使模型既博学又"懂规矩"。这一演变揭示了大模型的终极目标不仅是拥有知识,更要能按人类期望的方式应用知识。学习路径建议分阶段掌握提示工程、RAG系统、智能体开发等核心技能,系统化学习大模型AI技术。
2026-01-20 09:37:33
568
原创 Agent架构新趋势:从模型能力到系统判断,收藏级深度解析判断工程化
Agent技术演进:从模型能力到系统判断工程化 随着大模型能力的成熟,Agent技术正经历重要转变:从追求模型强度转向系统化判断管理。当前挑战在于如何将原本即时完成的模型推理结构化,避免系统规模扩大时的不确定性。Claude Skills等方案通过将验证能力组件化,实现了经验资产化管理。未来Agent系统的关键将聚焦判断正确性而非输出美观度,判断的工程化和治理能力将成为技术分水岭。这一趋势反映了行业对Agent架构理解的深化,标志着技术发展进入新阶段。
2026-01-20 09:35:57
576
原创 Topo-RAG:拓扑感知检索,让表格数据在RAG中不再“失声“
Topo-RAG是针对混合文本-表格文档的创新RAG解决方案,采用双路径架构:文本路径使用标准向量检索,表格路径通过单元格级独立向量和MaxSim算子保留空间信息。该方法在SEC-25测试集上使表格查询性能提升22.9%,混合查询提升18.4%,同时将幻觉率从45%降至8%,为企业复杂文档处理提供高效解决方案。
2026-01-20 09:34:54
642
原创 2026年AI大模型开发完整学习路线:从基础到进阶,7大阶段助你成为AI开发高手
2024年AI大模型应用迎来爆发期,掌握相关开发技术至关重要。团队历时6个月打造了业界首份系统化学习路线,涵盖7大阶段:从基础开发、RAG架构、LangChain应用,到模型微调、Agent开发、智能设备优化及多模态技术。该路线包含37个章节,通过项目实战与理论结合,帮助开发者快速掌握核心技能。其中前4个阶段即可满足多数岗位需求,完整资料已免费发布在CSDN平台。这套体系化课程填补了行业空白,为AI开发者提供了清晰的学习路径。
2026-01-18 17:13:03
737
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅