- 博客(2119)
- 收藏
- 关注
原创 从小白到大神:AI大模型学习资源全汇总,AI大模型学习路线非常详细收藏这一篇就够了
本文是一份AI大模型学习指南,系统介绍从基础概念到实战项目的完整学习路径。内容涵盖数学基础、Python编程、深度学习原理、Transformer模型及预训练技术等核心知识,并提供思维导图、视频教程、应用报告、电子书等免费学习资源。适合零基础小白入门,通过系统学习和实战项目,帮助读者掌握大模型技术,提升职场竞争力。
2025-12-16 15:09:09
872
原创 100道高频大模型面试题,看我是如何手撕面试官 脚踢hr
提供一百道面试题并保证每一道题目的详细解答达到一千字是不太现实的,因为这将会是一个非常庞大的文档。不过,我可以为你提供一系列精心挑选的大模型相关面试题目,并简要说明每个问题的重点和考察方向,这样可以帮助你准备面试。大模型面试题集总结以上这些面试题目涵盖了从基础概念到高级技术的各个方面,对于准备大模型相关职位的面试非常有帮助。建议在准备过程中,不仅要熟悉这些问题的答案,还要尝试自己动手实践,这样才能真正掌握所学知识。希望这份面试题集能帮助你在面试中脱颖而出!
2024-08-16 16:06:29
1693
1
原创 跨越边界:我在转型AI产品经理的一年里所积累的成长与感悟
不知不觉,已经挂着AI产品经理的title过了一年多,盘点后竟然发现,这一年中居然从0到1做了4款AI应用产品,涉及内容、营销销售、私域运营等方向,忙碌而充实。今天就结合自己这一年多的AI转型实践,和大家分享下我关于AI产品经理的一些总结和思考。在这一年多的转型旅程中,我从一名传统产品经理成长为AI产品经理,这个过程充满了挑战与收获:知识体系的重构我系统地学习了机器学习、深度学习、自然语言处理等AI基础课程,弥补了技术知识的空白。
2024-08-02 18:07:37
2457
1
原创 从零开始认识大模型,入行必读!
大模型,顾名思义,就是具有庞大参数和复杂结构的机器学习模型。它能够处理海量的数据,从中提取出有价值的信息,为我们提供决策支持。与传统的机器学习模型相比,大模型具有更高的准确性、更强的泛化能力和更广泛的应用场景。
2024-06-24 13:47:24
2258
1
原创 2026大模型学习必备资源合集(收藏版):从入门到精通,助你快速成为AI高手!
本文汇总了12个高质量AI学习资源,覆盖产品经理、技术开发者、互联网从业者等不同人群需求。资源包含大模型入门指南、实战教程、面试宝典、最新技术资料等,总大小超过60GB,从理论到实践全方位助力AI学习。无论你是零基础小白还是希望转型的从业者,都能找到适合自己的学习路径,快速掌握AI核心技能。
2025-12-16 15:07:48
421
原创 大模型训练三阶段详解:数据准备、预训练与对齐(面试必学+收藏)
文章系统介绍大模型训练三大阶段:数据准备(收集、清洗、配比和分词)、预训练(学习语言规律)和后训练/对齐(SFT和RLHF)。同时讨论缩放定律、过拟合与梯度问题等关键概念,提供面试回答模板,强调工程与理论视角并重的重要性,帮助求职者系统应对大模型训练相关面试问题。
2025-12-16 15:06:23
714
原创 大模型框架全解析:从PyTorch到vLLM的实战选择指南
本文对比分析了11种大模型开发工具,涵盖训练、推理、微调和部署全流程。PyTorch以其灵活性和研究友好性成为首选训练框架;NVIDIA Triton和ONNX Runtime提供高性能推理方案;Hugging Face生态的Transformers和PEFT简化了NLP模型微调;DeepSpeed和Megatron针对超大规模训练优化;vLLM和Unsloth则专注于推理与微调效率提升。开发者可根据需求选择工具链:研究推荐PyTorch+Transformers,生产部署建议Triton+ONNX Run
2025-12-16 15:05:12
425
原创 GPT-5.2被Gemini 3 Pro碾压?真实编程场景实测,结果出人意料!
本文对比测试了GPT-5.2与Gemini 3 Pro在编程任务上的表现,通过烟花前端效果、学术论文分析和RAG代码重构三个场景进行评测。结果显示,Gemini 3 Pro在理解指令和代码重构方面表现更佳,而GPT-5.2在处理复杂任务时遇到困难。文章提示程序员在选择大模型辅助编程时需谨慎,建议根据具体需求选择合适工具。
2025-12-16 15:04:13
468
原创 收藏!大龄程序员转行大模型全攻略:月薪30K+,附90天学习路径与免费资源
本文为程序员提供转行AI大模型领域的全面指南,分析了转行动机包括高薪机遇、技术前沿等优势,以及大模型通用性、泛化能力等特点。文章详细呈现了90天四阶段学习路径:初阶应用了解基础,高阶应用掌握RAG系统,模型训练学习微调技术,最后实现商业闭环。结合市场数据(47万岗位缺口、28K平均薪资)和真实案例,提供从入门到实战的系统学习资源,帮助程序员顺利转型高薪AI岗位。
2025-12-15 15:00:29
899
原创 程序员转行大模型领域:零基础入门到项目实战全攻略
转行大模型领域需要扎实的理论基础和丰富的实践经验。通过系统学习、参与项目和开源社区,你可以逐步掌握大模型技术,并在职业发展中取得成功。希望这份攻略能为你的转行之路提供帮助,祝你在大模型领域大展宏图!
2025-12-15 14:59:20
495
原创 PT-5.2全面解析:从Code Red发布到打工人生产力提升指南
OpenAI在谷歌Gemini 3的竞争压力下紧急推出GPT-5.2,启动"Code Red"紧急状态。新模型核心改进包括:幻觉率降低38%、上下文窗口扩大至40万token、知识更新至2025年8月。特别值得关注的是其在ARC-AGI-2(真实智力测试)和GDPval(实际工作能力评估)中的突出表现,证明其更适合日常办公场景。GPT-5.2提供三个版本:Instant(基础版)、Thinking(推理版)和Pro(专业版),满足不同需求层次。尽管是被"催熟"的版本,
2025-12-15 14:58:23
456
原创 提示词设计技巧:为什么推理模型不需要角色指定?
本文分析了通用大模型与推理大模型在设计目标、训练方式和能力表现上的核心差异。通用模型擅长广泛的语言任务,需要角色扮演和详细引导来激发最佳表现;推理模型则专注于逻辑推理,凭借内置推理链能自主完成复杂思考。研究表明,提示词设计策略应因模型而异:通用模型需要具体指令和上下文,而推理模型偏好简洁直接的问题。理解这些差异有助于充分发挥不同模型的潜能,提升交互效果。
2025-12-15 14:56:16
403
原创 GPT-5.2震撼上线!性能碾压人类专家,程序员必学大模型技术,建议收藏
OpenAI发布GPT-5.2大模型反击谷歌Gemini,在44项职业测试中70.9%表现超越人类专家,速度提升11倍,成本降至1%。新模型降低30%幻觉率,推出Instant、Thinking、Pro三版本,已接入微软Office等生态。付费用户立即使用,免费用户13日开放,价格有所上调。明年一季度可能推出"成人模式",AI行业竞争加剧。
2025-12-15 14:55:01
487
原创 【珍藏版】AI大模型学习路线:从零基础到进阶,附赠免费学习资源
文章提供了一条完整的AI大模型学习路线,涵盖数学与编程基础、机器学习入门、深度学习深入、大模型探索、进阶应用及社区参与。各阶段配有经典书籍、在线课程和实践项目推荐,并附赠免费学习资源,包括学习路线图、视频教程、技术文档和面试题等,帮助小白和程序员系统掌握大模型技术,从理论到实践全面提升AI能力。
2025-12-12 14:41:57
841
原创 智谱GLM-4.6V多模态大模型开源:支持128K长上下文,API价格直降50%
智谱开源多模态大模型GLM-4.6V,提供基础版(106B参数)和轻量版(9B参数)。该模型具备原生多模态工具调用能力,支持图文混排创作、视图购物、长文理解等场景。在20多项多模态基准测试中表现优异,API价格较前代降低50%。技术亮点包括128K长上下文处理、世界知识增强和多模态智能体强化学习,适合本地部署与云端场景。
2025-12-12 14:40:30
682
原创 【建议收藏】大模型学习之路:零基础理解LLM、Transformer与GPT/BERT
本文系统阐述了大语言模型(LLM)的核心概念与技术原理。首先介绍了深度学习作为LLM的基础,然后详细解析了大模型的定义、特点及生成式AI属性。重点阐述了预训练与微调两大关键训练阶段,以及Transformer架构中的编码器-解码器结构和自注意力机制。通过对比GPT(纯解码器)与BERT(纯编码器)的架构差异,说明了大模型的不同应用场景。最后解释了Token在文本处理中的基础作用。文章强调理解这些核心技术对掌握大模型至关重要,并指出定制化模型在特定领域的优势,包括数据隐私保护、本地部署降本增效等实际价值。
2025-12-12 14:39:01
542
原创 大模型推理优化实战指南:从技术原理到系统优化全面解析
本文系统探讨了大语言模型(LLM)推理优化的多维度策略。研究指出模型大小、注意力机制和解码机制是影响推理性能的三大关键因素,并提出了数据级优化(输入压缩/输出组织)、模型级优化(高效FFN/注意力设计)和系统级优化(推理引擎)的解决方案。文章详细分析了KV缓存、量化、稀疏化等关键技术,为解决LLM推理中的高延迟、低吞吐问题提供了系统化思路。通过优化模型结构、数据表示和系统架构,可显著提升推理效率,为实际部署提供重要参考。
2025-12-12 14:37:53
915
原创 大模型参数与计算量全解析:以Qwen3-Coder-FP8为例
文章以Qwen3-Coder-FP8模型为例,详细分析了其62层Transformer结构,包括Attention和MoE-FFN两部分。计算显示,Attention部分仅占参数量的2%,而MoE-FFN部分占比97.5%。通过分析GQA和MoE架构,文章指出FFN部分的高效并行实现是多卡部署的关键。当序列长度超过8.7K时,Attention计算开销将超过FFN。
2025-12-12 14:36:30
557
原创 OpenAI亮剑GPT-5.2:全面超越Claude和Gemini,三版本功能详解与实战指南
OpenAI正式发布GPT-5.2,包含三个版本:Instant、Thinking和Pro。基准测试显示,GPT-5.2在软件工程、科学问题、竞赛数学等测试中全面超越Claude Opus 4.5和Gemini 3 Pro。GPT-5.2 Thinking在GDPval评测中达到人类专家水平(70.9%胜率)。各版本分别面向日常学习、专业工作和科研编程,Plus、Pro等付费用户已可使用,免费用户次日开放。这标志着大模型技术再次实现重大突破。
2025-12-12 14:35:06
600
原创 2025年AI大模型学习路线图:300+面试真题+1200+工具框架,一张图掌握全部!
本文提供了2025年AI大模型学习的全面资源,包括学习路线图、1200+AI工具框架、MJ/SD等应用教程、开源项目及变现案例。特别提供300道AI大模型面试真题,涵盖字节、腾讯等大厂面经、LLMs、Transformer、RAG等知识点。此外还包含26套行业研究报告和24套技术大会PPT,通过扫码可免费获取全部内容,为AI学习者提供一站式学习资源。
2025-12-10 15:27:06
806
原创 后LLM时代的AI革命:知识赋能、协作与共同进化全解析 - 程序员收藏指南
摘要 大型语言模型(LLMs)在理解和生成任务中表现出色,但仍面临知识过时、推理不透明和领域适应性差等挑战。本文提出三大发展方向:知识赋能通过整合外部知识库增强模型准确性和可解释性;模型协作利用LLMs与小型模型的互补优势提升效率;模型共进化使多模型通过知识共享实现动态环境适应。这些技术的融合将推动AI在科研、工程等领域的应用创新,特别是在假设生成、问题求解和结果解释方面展现突破潜力。未来需解决任务异构性、数据隐私等技术瓶颈,以实现更安全高效的智能系统协同进化。
2025-12-10 15:26:06
1155
原创 收藏!大模型智能体新突破:早期经验范式详解
本文提出"早期经验"新范式,通过将智能体自身行动结果转化为监督信号,无需外部奖励。包含隐式世界建模和自我反思两种方法,在八种环境实验中证明其能显著提升任务成功率(+9.6%)、领域外泛化能力(+9.4%),并为强化学习提供更好初始化。这一方法降低了数据依赖,提升了智能体泛化能力和鲁棒性,为语言智能体训练提供了实用桥梁。
2025-12-10 15:24:44
930
原创 LocalAI本地大模型实战:开源免费、无需GPU,小白也能轻松部署,强烈建议收藏!
LocalAI是一个开源本地AI大模型运行平台,无需GPU即可部署使用。它完全兼容OpenAI API接口,支持文本生成、图像处理、语音识别等多模态模型,采用Go+C++混合架构,提供P2P分布式推理功能。该平台有效解决了数据隐私保护、使用成本控制、网络依赖和硬件门槛等核心痛点,适用于企业知识库、边缘计算设备、开源项目集成等场景。通过Docker容器化部署,用户可在5分钟内快速搭建本地AI服务。作为完全开源项目,LocalAI让AI技术回归工具本质,为开发者提供了可自主掌控的本地化AI解决方案。
2025-12-10 15:23:34
823
原创 国企数字化转型中的大模型应用:程序员收藏指南
文章探讨了国有企业数字化转型的特殊性和AI大模型在企业中的应用。国企数字化转型兼具政策响应、考核要求和市场竞争三重驱动。企业应用大模型有六种考虑和四种形态,尤其在工业领域,大模型需与小模型融合实现具身智能。打通AI应用"最后一公里"的关键在于构建高质量数据集,结合企业私有化数据进行后训练。国企数字化转型需找准业务场景,实现从自动化向智能化的演进。
2025-12-10 15:22:22
1088
原创 从执行者到定义者:IT项目经理如何打赢2026大模型产品转型战
技术变革的浪潮正以前所未有的速度重塑职业版图。2026年,AI大模型已不再是实验室里的新奇概念,而是像水电煤一样融入各行各业的核心基础设施-5。据行业观察,超过60%的科技企业已将大模型能力嵌入核心产品架构,这一变革正在重新定义产品与项目管理的关系。在这一背景下,拥有丰富项目管理经验的IT项目经理们,发现自己站在了一个关键的十字路口。
2025-12-09 14:52:33
1275
原创 多模态大模型王者Qwen3-VL本地部署完全指南:从零开始上手教程
本文详细介绍了多模态大模型Qwen3-VL的本地部署与使用方法,包括模型选择、安装配置、运行参数设置等。重点推荐24G显存下部署Qwen3-VL-8B-Thinking模型,并详细阐述了其视觉编码增强、空间感知、长上下文理解等核心功能。文章提供了完整的安装步骤和运行指南,帮助读者快速上手这一先进的多模态大模型。
2025-12-09 14:48:00
1199
原创 【建议收藏】AI Agent架构详解:从技术原理到企业级落地,程序员必学的大模型新范式
本文解析了AI Agent作为下一代AI应用架构的技术范式,从"工具"到"智能伙伴"的演进需要Agent架构支持。文章介绍了Agent的四大基石(大脑/LLM、记忆、工具/手、指令/宪法)和企业级应用的三大组件(能力接入层、AI网关、Serverless运行时),提供了全新开发和存量改造两条落地路径,为构建高效AI应用提供技术地图。
2025-12-09 14:46:42
743
原创 收藏!AI Agent岗位薪资大公开:架构师80K+,如何成为大模型技术专家
本文详细介绍了AI Agent领域的四个关键职位:AI Agent专家/架构师(50-80K)、AI-Agent算法专家(35-60K)、Prompt工程师(15-25K)和AI Agent开发工程师(18-28K)。这些职位要求掌握大模型应用、智能体架构设计、多智能体协同和Prompt工程等技术,需要具备Python、Java等编程能力和深度学习框架使用经验,为想进入AI Agent领域的开发者提供了清晰的职业发展路径和技能要求。
2025-12-09 14:45:27
817
原创 收藏必备!大模型学习路径:从实践到理论,小白程序员高效入门指南
文章提出大模型学习应遵循"从实践到理论再到实践"的路径,建议先掌握Prompt工程、AI编程和API调用等应用技能,再了解原理,最后深入学习RAG、Agent和模型微调等技术。提供L1到L4分级学习路线,涵盖基础知识、RAG应用开发、Agent架构实践和模型微调与部署,帮助零基础学习者避免盲目学习,高效入门大模型领域。
2025-12-09 14:44:21
507
原创 AI产品经理学习教科书:2026年学习路线,掌握AI产品经理开发的秘诀!
成为一名优秀的AI产品经理,需要具备深厚的技术背景、良好的产品直觉、敏锐的市场洞察力以及出色的沟通协调能力。以下是一份详尽的AI产品经理学习路线,旨在帮助有意进入该领域的学习者建立起坚实的基础,并逐步成长为行业内的专家。
2025-12-08 17:10:31
1067
原创 大模型技术学习无非涵盖三个方面,理论,实践和应用
技术学习无非涵盖三个方面,理论,实践和应用大模型技术爆火至今已经有两年的时间了,而且大模型技术的发展潜力也不言而喻。因此,很多人打算学习大模型,但又不知道该怎么入手,因此今天就来了解一下大模型的学习路线。丁元英说:“透视社会有三个层面,技术,制度与文化”;同样的,技术学习同样有三个层面,理论,实践和应用,三者相辅相成,缺一不可。
2025-12-08 17:08:06
750
原创 大模型微调全面教程:从原理到实战落地
大模型微调教程:从原理到实战 本教程系统讲解大模型微调技术,包括核心概念、主流方法和实战流程。当RAG等外围增强手段无法满足特定领域深度需求时,微调通过调整模型参数实现三大价值:领域适配、精度提升和效率优化。 微调基于预训练模型,通过有监督学习优化参数,分为全参微调(资源消耗大)和高效微调(PEFT)。其中LoRA技术通过添加低秩矩阵实现参数高效调整,成为主流方案。实战部分以小学数学解题为例,详细说明环境配置、数据集构建(需1000+优质样本)和训练过程监控(防止欠/过拟合),并演示基于ms-swift框架
2025-12-08 16:55:19
699
原创 Agent圣经洞察(四):Function Call、MCP、Skills,揭秘行业趋势与挑战!
今天一篇文章,带你了解LLM调用工具的发展历程,搞懂Function Call、MCP、Skills这些概念与异同,并重点讲解最新的Agent Skills。
2025-12-08 16:52:24
529
原创 【收藏】LangChain 1.0+替代doctran实现问答转换,小白也能轻松上手
本文介绍了如何在保持LangChain 1.0+环境不降级的情况下,用LangChain原生工具替代doctran实现问答转换功能。文章提供了详细的代码对比和安装步骤,展示了如何使用QATransformer或OpenAIQATransformer替代doctran,实现从文档生成问答对的功能,同时保留了LangChain 1.0+的新特性,无需额外依赖doctran库。
2025-12-08 15:46:40
683
原创 大模型学习必备书籍:十本精选,自学大模型,一般人我劝你还是算了吧
以下是精心挑选的十本学习大模型必读书籍,包括它们的主要内容、适合的人群以及推荐理由:
2025-12-06 15:36:05
1236
原创 程序员如何转行大模型?五大热门岗位推荐,IT行业最后的风口就在大模型!错过就难有下次了!
大模型热门岗位解析 模型研发工程师:负责深度学习模型架构设计与优化,需掌握Python、TensorFlow/PyTorch,具备数学基础和创新能力。适合对算法设计感兴趣的研究型人才,应用于CV、NLP等领域。 算法工程师:聚焦算法落地与业务结合,需熟悉机器学习、数据处理工具(如Pandas)。适合喜欢解决实际问题的开发者,应用于金融、医疗、推荐系统等场景。 两类岗位均需扎实技术功底,前者侧重模型创新,后者强调应用实现,为程序员转型大模型领域提供明确方向。
2025-12-06 15:34:13
852
原创 企业AI落地关键:构建高质量数据集训练垂域大模型(收藏级指南)
文章阐述了企业构建高质量数据集对打造垂直领域大模型的重要性,详细介绍了专用数据集的特点、分类及建设架构。从确定数据范围与来源、数据采集,到数据治理(清洗、增强、合成、脱敏、标注),再到数据管理与维护及业务能力建设,形成完整闭环。高质量、高价值密度的数据集将成为企业AI发展的核心竞争力,助力企业实现精准业务洞察与决策支持。
2025-12-06 15:30:58
834
原创 【必学收藏】从零构建深度思考型RAG智能体:解决复杂查询的完整指南
深度思考型RAG系统实现方案 本文提出了一种创新的深度思考型RAG流水线,通过构建循环式智能体架构,有效解决了传统RAG在处理复杂多跳查询时的局限性。该系统采用多阶段工作流程: 规划阶段将复杂查询分解为结构化研究计划 自适应检索阶段动态选择最佳搜索策略 精炼阶段通过交叉编码器重排序结果 反思和批判阶段建立累积理解并做出战略决策 最终综合阶段生成全面可引用的答案 实验采用NVIDIA 10-K文件作为测试知识库,通过RAGAs评估框架验证,该系统在复杂查询处理上显著优于基础RAG,具有更高的精确率、召回率和答
2025-12-06 15:29:15
969
原创 【必学收藏】零基础实现ReAct智能体:LangChain框架+通义千问实战指南(附完整代码)
本文介绍了一个基于LangChain框架和阿里通义千问大模型实现的ReAct风格AI智能体。该智能体支持天气查询(通过Open-Meteo API)和名人查询(通过维基百科API)两种工具调用,完整展示了"思考→行动→观察→回答"的推理过程。文章提供了详细的Python代码实现,包含注释说明、工具函数封装和主逻辑流程,并演示了如何将外部API查询功能集成到LangChain工具系统中。该实现可作为构建复杂AI代理的参考案例,展示了框架化开发与纯手写代码的差异。
2025-12-06 15:26:38
706
原创 AI时代程序员逆袭宝典:四大核心路径,助你突破瓶颈,从小工蜕变为专家!
在AI时代,程序员面临挑战与机遇。文章提出从小工蜕变为专家的四大路径:一是认知升级,从被动编码到主动驾驭AI;二是能力拓展,打造复合型技能;三是思维跃迁,从功能实现到系统架构;四是持续学习,构建个人成长闭环。AI不是替代者而是助手,程序员应积极拥抱变革,在技术浪潮中实现职业进阶。
2025-12-03 14:14:52
1050
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅