- 博客(1041)
- 收藏
- 关注

原创 100道高频大模型面试题,看我是如何手撕面试官 脚踢hr
提供一百道面试题并保证每一道题目的详细解答达到一千字是不太现实的,因为这将会是一个非常庞大的文档。不过,我可以为你提供一系列精心挑选的大模型相关面试题目,并简要说明每个问题的重点和考察方向,这样可以帮助你准备面试。大模型面试题集总结以上这些面试题目涵盖了从基础概念到高级技术的各个方面,对于准备大模型相关职位的面试非常有帮助。建议在准备过程中,不仅要熟悉这些问题的答案,还要尝试自己动手实践,这样才能真正掌握所学知识。希望这份面试题集能帮助你在面试中脱颖而出!
2024-08-16 16:06:29
1565

原创 跨越边界:我在转型AI产品经理的一年里所积累的成长与感悟
不知不觉,已经挂着AI产品经理的title过了一年多,盘点后竟然发现,这一年中居然从0到1做了4款AI应用产品,涉及内容、营销销售、私域运营等方向,忙碌而充实。今天就结合自己这一年多的AI转型实践,和大家分享下我关于AI产品经理的一些总结和思考。在这一年多的转型旅程中,我从一名传统产品经理成长为AI产品经理,这个过程充满了挑战与收获:知识体系的重构我系统地学习了机器学习、深度学习、自然语言处理等AI基础课程,弥补了技术知识的空白。
2024-08-02 18:07:37
2166

原创 深入探究文档解析技术,助力大模型训练与应用的创新发展
探索文档解析技术是推动大模型训练与应用的重要一环。随着信息的爆炸式增长,文档数据成为了重要的数据来源之一,这些数据以多种形式存在,包括结构化数据、非结构化文本和图像等。因此,有效地解析和理解这些文档数据对于提升大模型性能与拓展大模型应用至关重要。在此背景下,大模型训练与应用需要依赖先进的文档解析技术来处理复杂的文档数据。
2024-07-19 11:41:07
2042

原创 初识LangChain的快速入门指南
LangServe可以帮助开发人员将LangChain应用程序部署为REST API。使用LangChain时不是必定使用LangServe。安装langserve。
2024-06-29 20:56:14
1716

原创 从零开始认识大模型,入行必读!
大模型,顾名思义,就是具有庞大参数和复杂结构的机器学习模型。它能够处理海量的数据,从中提取出有价值的信息,为我们提供决策支持。与传统的机器学习模型相比,大模型具有更高的准确性、更强的泛化能力和更广泛的应用场景。
2024-06-24 13:47:24
2143
原创 2025最新AI产品经理学习路线:大模型产品经理零基础入门到精通,非常详细,爆肝熬夜三天整理!
随着人工智能技术的发展,尤其是大模型(Large Model)的兴起,越来越多的企业开始重视这一领域的投入。作为大模型产品经理,你需要具备一系列跨学科的知识和技能,以便有效地推动产品的开发、优化和市场化。以下是一份详细的大模型产品经理学习路线,旨在帮助你构建所需的知识体系,从零基础到精通。
2025-05-06 15:38:17
492
原创 转行A大模型I产品经理:普通产品经理的转型攻略_转行AI产品经理
我认为的Ai产品经理,其实它是在通用产品经理的基础上,增加了一个显著能力,就是如何运用现有的AI技术去帮助客户解决问题,并在原有工作效率,或用户体验上起到增强的效果。
2025-05-06 14:19:44
629
原创 为什么现在程序员都在冲大模型方向?
大模型的狂欢已来到高潮2030年AI 相关人才缺口将达过去一年,63%的企业都在布局AIDeepSeek爆火更是阿里、字节等互联网巨头纷纷打响了这让等岗位瞬间成为各大厂火爆招聘的热门岗懂AI的程序员年薪甚至翻到!作为程序员快速链接产品/业务团队,构建技术壁垒,从竞争者中脱颖而出避开35岁裁员危险期,顺利迭代技术水平,延长……那这节课你一定要来听!01联合打磨老师还会帮你深度剖析现在大厂关于大模型招聘的等,从面试官的角度帮你规划职业发展路径!
2025-05-06 14:17:50
442
原创 关于 RAG 的优化方案及评估,非常详细收藏这一篇就够!
组成,并分两步检索,首先将query与摘要匹配过滤掉不相关的文档,并只在相关组内检索第二层文档块。
2025-05-06 14:13:59
260
原创 如何(借助AI)成为超级个体
安逸的生活是永远叫不醒那些装睡的人的,但是饿肚子是能叫醒的,2025年,人工智能发展的速度这么快,稍微有一点头脑的人都能想得明白,未来3~5年AI基本上会取代50~60%的基础工作,再加上有些没有核心竞争力的企业本身生存能力就差,而且经营成本还高,这种组织形态一定会加速瓦解,在这种情况下,一定会有很多脑子够勤奋,执行力还强的,可以单枪匹马,独立创造价值的个体出现,他们没有企业经营的那种负担,他们也不靠资源和背景吃饭,完全是借助当下这个时代生活方式和技术变革带来的红利,独立的生存在这个不是太好商业环境之下,蒸
2025-05-06 14:11:01
501
原创 解读MCP的3个核心组件、MCP Server生命周期,非常详细收藏这一篇就够!
在传统交互实现中,开发人员必须为 AI 应用交互的每个工具或服务,建立手动 API 连接。此过程需要为每次集成进行自定义身份验证、数据转换和错误处理。随着 API 数量的增加,维护负担变得非常显著,通常会导致紧密耦合且脆弱的系统,难以扩展或修改。MCP通过提供标准化协议来简化此过程,该协议使AI智能体能够通过统一的接口无缝地调用、交互和链接多个工具。这减少手动配置并增强了任务灵活性,使智能体能够执行复杂的操作而无需大量的自定义集成。
2025-05-06 14:08:21
235
原创 大模型入门学习攻略【非常详细】,收藏这篇就够了!
在掌握机器学习之前,理解支撑这些算法的基本数学概念非常重要。:这是理解许多算法(特别是深度学习算法)的关键。主要概念包括向量、矩阵、行列式、特征值和特征向量、向量空间以及线性变换。:许多机器学习算法涉及到连续函数的优化,这需要理解导数、积分、极限和级数。多变量微积分以及梯度的概念也很重要。:这些知识对于理解模型如何从数据中学习并进行预测至关重要。主要概念包括概率理论、随机变量、概率分布、期望、方差、协方差、相关性、假设检验、置信区间、最大似然估计和贝叶斯推断。有的时候临时抱佛脚也是可以的。
2025-05-05 11:40:17
1634
原创 2025爆火全网的从零构建大模型教程:非常详细,已突破56K star!
什么!一本书的Github仓库居然有18.5k的星标!(这含金量不必多说)对GPT大模型感兴趣的有福了!这本书的名字叫也就是虽然这是一本英文书、而且还没正式出版,但是他真的可以帮你使用python从零构建一个自己的大模型!为了加强读者的动手能力,这本书主要使用的是框架,而不是依靠各种库。通过这种方法,加上大量的图表和插图让大家可以彻底了解llm的工作原理。
2025-05-05 11:37:49
668
原创 训练大模型的目的,就是为了解决业务问题(非常详细),零基础入门到精通,看这一篇就够了
训练大模型的目的,就是为了解决业务问题”学习机器学习的人大部分都知道怎么设计并训练一个模型,但开发模型的目的是为了解决业务问题,所以怎么使用大模型也是重中之重。刚训练好的大模型事实上虽然可以用,但由于没有用户接口,所以只能自己用,无法对外提供服务;所以,刚训练好的大模型需要经过一些处理才可以使用,包括数据预处理,接口开发等。huggingface官网地址:https://huggingface.co/models 需科学上网01、大模型加载与保存。
2025-05-05 11:35:14
469
原创 提示词(Prompt)工程入门(非常详细),一文让你搞懂提示词工程,老奶奶看了都能学会
提示词工程,或称Prompt Engineering,是一种专门针对语言模型进行优化的方法。它的目标是通过设计和调整输入的提示词(prompt),来引导这些模型生成更准确、更有针对性的输出文本。在与大型预训练语言模型如GPT-3、BERT等交互时,给定的提示词会极大地影响模型的响应内容和质量。提示词工程关注于如何创建最有效的提示词,以便让模型能够理解和满足用户的需求。这可能涉及到对不同场景的理解、使用正确的词汇和语法结构,以及尝试不同的提示策略以观察哪种效果最佳。1、明确具体:加入场景要求、具体任务。
2025-05-05 11:33:39
752
原创 2025年AIGC应用实践报告:从“辅助工具”到“爆款大师”,AIGC还需跨过三个技术门槛|附39页文件下载
本文提供完整版报告下载,请查看文后提示。......文│爱分析。
2025-05-05 11:30:55
544
原创 我做了一个适用于所有AI的插件
在这个时代,我们必须和AI好好说话提示词是你跟 AI 交流的媒介而你和 AI 交流用的是语言,如今的语言分为人工语言和自然语言AI 由计算机生成,而计算机语言是人工语言的分支所以你用偏人工语言的自然语言和 AI 交流的效率就是最高的我们不管用AI和搜索引擎,我们的最终目的还是搜索搜索无非就是:Know、Learn、Do、Create那么,你的提示词就是你的输入,对应的输出就是AI的回答正所谓:垃圾进,垃圾出你的输入决定了你的输出,提示词再重要不过了而当我习惯了和AI交流后,我发现我每次都会调用同样的提示词,
2025-05-05 11:29:41
563
原创 聊聊AI智能体框架MetaGPT下的RAG实践
1]是一个智能体开发框架,其功能完备,易于介入开发,而且是国内的团队开发的,直接可以对标微软的autogen等一众智能体框架。MetaGPT集成了llama_index,进而实现了RAG,结合MetaGPT可以方便快速的接入自定义LLM,使得使用体验是很好的,比在llama_index中自定义LLM及使用RAG要更方便。
2025-05-05 11:28:01
746
原创 2025年AI大模型产品经理终极学习路线,AI产品经理零基础到精通,非常详细,收藏这一篇就好了!
成为一名优秀的AI产品经理,需要具备深厚的技术背景、良好的产品直觉、敏锐的市场洞察力以及出色的沟通协调能力。以下是一份详尽的AI产品经理学习路线,旨在帮助有意进入该领域的学习者建立起坚实的基础,并逐步成长为行业内的专家。
2025-05-04 18:04:10
1002
原创 2025最详细的大模型面经:大模型面试攻略全面面经,助你顺利通关并精通
通过上述的面试经验分享,希望能够帮助大家更好地准备大模型领域的面试。记住,成功的面试不仅仅是技术能力的展示,更是个人态度和沟通能力的体现。希望每位求职者都能顺利通过面试,找到满意的工作!通过以上面试经验分享,相信您已经对大模型岗位的面试有了较为全面的认识。接下来,您可以根据自己实际情况制定相应的复习计划,并积极准备即将到来的面试。祝您面试顺利!
2025-05-04 18:00:28
586
原创 大模型必读书籍分享《大模型入门:技术原理与实战应用》(附PDF),看完我真正入门大模型了!
本书深入探讨大模型技术及其应用的书籍,特别聚焦于提示工程这一新兴领域。本书揭示了大模型的工作原理,展示了如何通过精心设计的提示引导大模型产出高质量内容,涵盖了从电子商务、创意营销到内容创作、智能办公、编程和软件生态等多个领域的实践案例,为读者提供了一个全面的技术科普和操作指南,帮助读者掌握与大模型高效协作的方法,挖掘大模型潜力,解决实际问题。
2025-05-04 17:57:31
503
原创 Unsloth新增支持Qwen3微调|速度提升2 倍,显存减少70%,最高支持128K长上下文
近日,新增支持系列大模型的微调与部署。这次更新不仅大幅优化了性能表现,还降低了显存门槛,让 Qwen3 模型的使用更加高效、轻量。以下是本次更新的核心亮点:✅ 微调速度提升约 2 倍✅ 显存使用减少约 70%✅ 最长上下文支持扩展至 128K✅ Qwen3-30B-A3B 模型仅需 17.5GB 显存✅ 免费 Colab Notebook 即刻上手微调 Qwen3-14B✅ 已支持全参数微调、预训练和部署。
2025-05-04 17:50:45
882
原创 从零开始构建 Transformer 模型,非常详细,收藏这篇就够了
这篇由Brandon Rohrer撰写的技术文档《Transformers from Scratch》系统性地拆解了Transformer模型的核心原理和实现细节,通过层层递进的数学推导和可视化类比,揭示了Transformer如何通过矩阵运算的巧妙组合实现强大的序列建模能力,为理解现代大语言模型奠定了扎实的理论基础。
2025-05-04 17:46:58
805
原创 基于 AI 大模型的数据治理白皮书的主要内容
基于AI大模型的智能数据治理能够有效提高数据治理的效率和准确性,解决数据治理中的难题。数据治理将更加智能化、自动化,为企业的数字化转型和智能化发展提供有力支持,释放数据价值。
2025-05-04 17:44:40
850
原创 成功转型AI产品经理之路:从传统产品到AI产品的全面指南
定期总结学习成果,撰写博客、发表文章或分享经验,不仅可以加深对知识的理解,还能提升个人的行业影响力。通过不断输出高质量的内容,你可以在AI领域建立起自己的品牌,吸引更多机会。可以考虑以下几种形式:公众号:开设一个专注于AI技术的公众号,定期发布技术文章、案例分析、行业动态等内容。知乎专栏:在知乎上开设专栏,回答用户提出的问题,分享自己的见解和经验。GitHub仓库:将个人项目代码上传到GitHub,记录项目的开发过程和心得,展示你的技术实力。
2025-05-03 17:08:37
1004
原创 大模型行业应用入门:一文读懂LLM Fine Tuning(微调)
一个普遍的误解是:人们认为微调(Fine-Tuning) 是 LLM 获取新知识的唯一 (或最佳) 方式。事实并非如此。无论是为产品添加智能协作助手,还是使用 LLM 分析存储在云端的大量非结构化数据,企业的实际数据和业务环境才是选择合适 LLM 方法的关键因素。在许多情况下,与传统的微调方法相比,采用其他策略往往更能有效地实现企业的目标。这些策略可能操作复杂度更低、对频繁变化的数据集具有更强鲁棒性、或者能产生更可靠准确的结果。那么,何为LLM Fine Tuning?
2025-05-03 17:06:30
1010
原创 利用大模型构建数据集并微调:完整教程
目前大模型的微调方法有很多,而且大多可以在消费级显卡上进行,每个人都可以在自己的电脑上微调自己的大模型。前排提示,文末有大模型AGI-CSDN独家资料包哦!但是在微调时我们时常面对一个问题,就是数据集问题。网络上有许多开源数据集,但是很多时候我们并不想用这些数据集微调模型,我们更希望使用某本书、某个作者的作品、我们自己的聊天记录、某个角色的对话来微调模型。用于微调的数据通常是成千上万的问答对,如果手工搜集,需要花费大量时间。
2025-05-03 17:04:46
1032
原创 问数:试玩Vanna+deepseek v3+ChromaDB
业务架构图了算是它的它有一个云服务吧可以生成API的key但其实我后来放弃了,没用它这个模式我一开始误以为它不支持windows,所以花了一点时间切换到wsl2下面去安装uv和建立环境官方默认的一个依赖库是有问题的所以只好稍微绕一下安装它的最新版本的,1.0.0rc0上面那个有问题的库,其实就是用来画图的这块,略微有点影响体验,减分了,官方维护的不太好看来安装sqlite3安装向量库和openai依赖别看是官方的示例数据库,表还不少训练数据其实就是是一张表的DDL。
2025-05-03 17:03:00
686
原创 MiMo-7B:小米大模型,为推理而生
我们提出了 MiMo-7B,一个专为推理任务而生的大型语言模型,其优化贯穿了预训练和后训练两个阶段。在预训练期间,我们增强了数据预处理流程,并采用三阶段数据混合策略来强化基础模型的推理潜力。MiMo-7B-Base 在 25 万亿(Trillion)个 token 上进行预训练,并引入了多词元预测(Multi-Token Prediction)目标以提升性能和加速推理速度。
2025-05-03 16:58:16
622
原创 厦门大学:DeepSeek大模型及其企业应用实践|附147页文件下载
报告详细介绍了大模型的概念、发展历程、与人工智能的关系、分类等,强调大模型具有海量参数、强大的学习能力和泛化能力。大模型能够学习细微模式和规律,具有上下文理解、学习能力强和语言生成能力,以及高可迁移性。大模型的发展经历了萌芽期、沉淀期和爆发期,对算力的需求不断演变。报告还探讨了大模型在企业中的应用,包括落地方案、智能体应用、厂商服务和典型案例,以及AIGC技术在企业中的应用实践和大模型的未来发展趋势。......文│厦门大学。
2025-05-03 16:56:01
456
原创 AI产品经理的基础知识:一篇文章搞懂Transformer以及扩散模型
如果说Transformer是靠注意力机制在建造高楼大厦,那扩散模型就是先拆楼再盖楼,过程相当带感。扩散模型是一类生成模型的新秀,严格名字叫去噪扩散概率模型(Denoising Diffusion Probabilistic Model,缩写DDPM)。它的基本思想源自物理学的扩散过程:想象我们有一张清晰的图片,不断往上添加随机噪声,最后会变成纯噪声点阵;而扩散模型要学的,就是如何逆转这个过程——从纯噪声开始,逐步去除噪声。
2025-05-03 16:54:23
952
原创 Qwen3 实测:开源走歪了吗?
看榜单Qwen3很能打, 但从理解能力,意图聚焦,逻辑推理上看,离实战还是远。最让人疑惑的是:为什么意图发散,甚至偏离。和商业模型比,差距被拉大,不禁要问,开源模型是不是迷失了?大家要的是实战能力,并不是榜单。
2025-05-03 16:52:38
509
原创 刚刚,DeepSeek发布全新模型:不是R2,引领新潮流!
就在刚刚(2小时前),DeepSeek在开源社区huggingface上发布了新模型,不是R2,也不是V4。而是【DeepSeek-Prover-V2-671B】,一个专门解决数学问题的专家模型Prover-V2。新模型依旧采用自由度最高的MIT协议(任何人都可以免费使用、修改、分发和商用)开源。这是开源网址。Huggingface社区:上一代的DeepSeek-Prover模型,是于去年8月16日发布的DeepSeek-Prover-V1.5模型。
2025-05-02 18:22:30
984
原创 大模型转型宝典:从零基础到精通,必备知识与技能全面解析,转行大模型必看的一篇文章
引言随着人工智能和大模型(如GPT-4、BERT等)技术的快速发展,越来越多的专业人士希望转行进入这一领域。大模型开发涉及复杂的技术体系和多样的应用场景,对从业者的知识和能力提出了较高要求。本文将详细解析转行大模型开发所需的知识体系、能力要求及学习路径,并结合实际数据和案例,提供深度指导。
2025-04-30 17:10:50
1143
原创 智能体(AI Agent)全面解析:概念、原理与应用,洞悉AI技术趋势
以智能音箱为例,亚马逊Echo、谷歌Home等明星产品,凭借先进的语音识别与自然语言处理技术,成为了家庭中的智能小助手,只需简单的语音指令,便能轻松掌控家中的灯光、空调、电视等设备。自主智能体(Autonomous Agents),作为其中的佼佼者,它们如同拥有独立思维的探险家,在无需人类直接干预的情况下,凭借预设的规则与目标,勇敢地踏上自主完成任务的征途。在智能交通的宏伟蓝图中,智能体通过精准的数据分析与调度优化,有效缓解了交通拥堵与事故频发的问题,为人们的出行带来了更多的安全与便利。
2025-04-30 17:08:31
767
原创 2025年未来就业趋势报告:十大新兴行业预测与人工智能全领域赋能
随着人工智能技术从"工具属性"向"底层基建"转型其已渗透到制造、医疗、农业、教育、金融等全产业领域未来十年,AI从业者将不再局限于算法工程师,而是形成"技术+场景"的复合型人才矩阵。以下是关键职业方向与入行策略分析。
2025-04-30 16:40:18
2466
原创 2025年DeepSeek快速入门指南(医生版)|附204页文件
本文主要介绍了DeepSeek在医学领域的应用,包括临床应用场景、科研利器、个人品牌建设、医学科普、医护人员实用指南、风险与挑战以及未来展望。文中提到DeepSeek在数学推导、逻辑分析、代码生成、复杂问题拆解等方面表现出色,能够辅助医生进行病历撰写、科研数据分析、文献整理、论文润色等。同时,DeepSeek也存在一些缺点,如输出结果可能存在误差、联网搜索的局限性、对用户提问的要求较高、数据隐私和安全问题等。
2025-04-30 16:36:53
392
原创 企业级RAG:数据方案选择的关键博弈与挑战
智能时代,企业数据每日剧增。员工寻找答案的效率直接影响工作流程,StackOverflow调查表明54%的开发者因等待问题答案而工作中断。。检索增强生成(RAG)技术为企业级知识管理带来希望。但RAG系统的魔力不在于语言模型本身,而在于底层数据存储方案的选择。
2025-04-30 16:34:52
640
原创 Agent记忆体框架总结,以及Mem0框架试用with deepseek
以上框架均聚焦于AI智能体的长期记忆管理,通过知识图谱、语义检索、动态更新等技术,解决传统RAG在上下文维持与持续学习中的不足,覆盖从个性化助手到企业级应用的多样化场景。以下是基于多个维度的开源AI Memory框架对比表格,涵盖技术特点、适用场景、许可协议等关键维度:项目名称核心技术存储方式主要优势适用场景许可协议活跃度/备注Graphiti时间感知知识图谱,动态关系演化图数据库支持时间维度数据关联,上下文变化追踪需时间维度分析的AI智能体未明确基于图结构Letta。
2025-04-30 16:32:52
882
原创 AI大模型学习必读十本书籍:从技术内核到商业落地的全景指南,一篇文掌握全部知识
大模型技术正以“月”为单位迭代,但核心能力建构仍需回归经典著作与一线实践。这十本书籍从代码到商业,从Transformer架构到数字治理,构建了完整的认知拼图。正如《大语言模型》序言所言:“技术封锁从不会阻挡文明进程,知识的开放共享才是创新的源泉。”掌握这些知识体系,你将成为定义AI时代规则的引领者。
2025-04-29 21:11:49
1171
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人