poj 2777 Count Color 线段树+位运算

继续线段树专题练习。。。

今天似乎对lazy-tag有一点点感觉了。

当我们更新一个区间时,不必更新它的子区间,等到需要用到时再更新。也就避免了每次都更新到底。从而降低时间复杂度。


这个题用的是位运算,时间上较快。

由于颜色至多只有30种,于是我们可以用一个int型的整数来表示一种颜色。

如000…01表示color1, 000…10表示color2,以此类推,100…00表示color30

对于非叶子节点rt,记录的是左孩子和右孩子节点异或的值。亦即:sum[rt]=sum[lson] | sum[rson];

比如左孩子color1 为000…01,右孩子color2 为000…10,异或后的值为000…11。此时父节点的颜色数为2.。就是二进制中1的个数。

对于一个区间,只需求出完美覆盖该区间的各节点异或后的值,再输出该值二进制中1的个数即可。


下面是我的代码:


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;

#define mid ((l+r)>>1)
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1

const int MAXL=100001;
int sum[MAXL<<2],col[MAXL<<2];

int count(int p)
{   //计算p的二进制中1的个数
    int cnt=0;
    while(p){
        if(p%2) cnt++;
        p>>=1;
    }
    return cnt;
}

void PushUp(int rt)
{
    sum[rt]=sum[rt<<1]|sum[rt<<1|1];
}

void PushDown(int rt)
{
    if(col[rt]){
        col[rt<<1]=col[rt<<1|1]=col[rt];  //标记左右孩子节点的颜色
        sum[rt<<1]=sum[rt<<1|1]=1<<(col[rt]-1);  //标记左右孩子节点的颜色值
        col[rt]=0;
    }
}

void build(int l,int r,int rt)
{
    col[rt]=0;
    if(l==r){
        sum[rt]=1;
        return ;
    }
    build(lson);
    build(rson);
    PushUp(rt);
}

void update(int L,int R,int val,int l,int r,int rt)
{
    if(L<=l && r<=R){
        col[rt]=val;
        sum[rt]=1<<(val-1);
        return ;
    }
    PushDown(rt);
    if(L<=mid)  update(L,R,val,lson);
    if(R>mid)   update(L,R,val,rson);
    PushUp(rt);
}

int query(int L,int R,int l,int r,int rt)
{
    if(L<=l && r<=R)
        return sum[rt];
    PushDown(rt);
    int ret=0;
    if(L<=mid)  ret|=query(L,R,lson);
    if(R>mid)   ret|=query(L,R,rson);
    return ret;
}

int main()
{
    int L,T,O;
    int a,b,c;
    char op[2];
    cin>>L>>T>>O;
    build(1,L,1);
    while(O--){
        scanf("%s",op);
        if(op[0]=='C'){
            scanf("%d%d%d",&a,&b,&c);
            if(a>b) swap(a,b);
            update(a,b,c,1,L,1);
        }
        else{
            scanf("%d%d",&a,&b);
            if(a>b) swap(a,b);
            printf("%d\n",count(query(a,b,1,L,1)));
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值