optimization

记得以前读硕士时学过数值分析,也学过计算流体力学。

做的project也不多,一个是练习,就是把空间分割,然后迭代数值模拟,好像有有限元法什么的,都忘记了。而毕业论文直接用的是矩阵的计算和分解, fortran 的库中可是矩阵计算的各种库做的很好,那个时候总感觉用的更多的是数值分析中的计算吧,大多数是矩阵的各种分解方法。那个时候,因为只设计到稳定性分析,维度比较小,不受样本的影响,因此矩阵的计算简单很多。

numerical optimization,翻译过来是数值优化,我想了想,就是把用矩阵分解直接求解无法做到的问题转换为优化问题,具体就是转换求最小值的问题,怎么求最小值呢,先给一个初始化的值,然后通过迭代的方式,最后逼近最优值。而numerical optimization要做的就是找到一个合理的迭代方向和步长,在最小空间和时间的消耗下,尽快达到收敛。在这个过程中,也产生了各种各样的算法。书上总是说,各种算法适合解决large problem,不过感觉遇到当今的大数据,还是要再进行近似和distributed,在看各个算法时,这也是一个需要思考的地方。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值