oracle的rank,over partition 使用 和lead

 http://blog.csdn.net/rokii/article/details/6429145

排列(rank ())函数。这些排列函数提供了定义一个集合(使用 PARTITION 子句),然后根据某种排序方式对这个集合内的元素进行排列的能力,下面以scott用户的emp表为例来说明rank over partition如何使用

 

1)查询员工薪水并连续求和

select deptno,ename,sal,

sum(sal)over (order by ename) sum1,  /*表示连续求和*/
sum(sal)over () sum2,                           /*相当于求和sum(sal)*/
100* round(sal/sum(sal)over (),4) "bal%"
from emp

结果如下:

    DEPTNO ENAME             SAL       SUM1       SUM2       bal%
---------- ---------- ---------- ---------- ---------- ----------
        20 ADAMS            1100       1100      29025       3.79
        30 ALLEN            1600       2700      29025       5.51
        30 BLAKE            2850       5550      29025       9.82
        10 CLARK            2450       8000      29025       8.44
        20 FORD             3000      11000      29025      10.34
        30 JAMES             950      11950      29025       3.27
        20 JONES            2975      14925      29025      10.25
        10 KING             5000      19925      29025      17.23
        30 MARTIN           1250      21175      29025       4.31
        10 MILLER           1300      22475      29025       4.48
        20 SCOTT            3000      25475      29025      10.34

    DEPTNO ENAME             SAL       SUM1       SUM2       bal%
---------- ---------- ---------- ---------- ---------- ----------
        20 SMITH             800      26275      29025       2.76
        30 TURNER           1500      27775      29025       5.17
        30 WARD             1250      29025      29025       4.31

 

2)如下:

select deptno,ename,sal,
sum(sal)over (partition by deptno order by ename) sum1,/*表示按部门号分氏,按姓名排序并连续求和*/
sum(sal)over (partition by deptno) sum2,/*表示部门分区,求和*/
sum(sal)over (partition by deptno order by sal) sum3,/*按部门分区,按薪水排序并连续求和*/
100* round(sal/sum(sal)over (),4) "bal%"
from emp

结果如下:

    DEPTNO ENAME             SAL       SUM1       SUM2       SUM3       bal%
---------- ---------- ---------- ---------- ---------- ---------- ----------
        10 CLARK            2450       2450       8750       3750       8.44
        10 KING             5000       7450       8750       8750      17.23
        10 MILLER           1300       8750       8750       1300       4.48
        20 ADAMS            1100       1100      10875       1900       3.79
        20 FORD             3000       4100      10875      10875      10.34
        20 JONES            2975       7075      10875       4875      10.25
        20 SCOTT            3000      10075      10875      10875      10.34
        20 SMITH             800      10875      10875        800       2.76
        30 ALLEN            1600       1600       9400       6550       5.51
        30 BLAKE            2850       4450       9400       9400       9.82
        30 JAMES             950       5400       9400        950       3.27

    DEPTNO ENAME             SAL       SUM1       SUM2       SUM3       bal%
---------- ---------- ---------- ---------- ---------- ---------- ----------
        30 MARTIN           1250       6650       9400       3450       4.31
        30 TURNER           1500       8150       9400       4950       5.17
        30 WARD             1250       9400       9400       3450       4.31

 

3)如下:

select empno,deptno,sal,
sum(sal)over (partition by deptno) "deptSum",/*按部门分区,并求和*/
rank ()over (partition by deptno order by sal desc nulls last)  rank , /*按部门分区,按薪水排序并计算序号*/
dense_rank()over (partition by deptno order by sal desc nulls last) d_rank,
row_number()over (partition by deptno order by sal desc nulls last) row_rank
from emp

注:

rang()主要用于排序,并给出序号

dense_rank():功能同rank ()一样,区别在于,rank ()对于排序并的数据给予相同序号,接下来的数据序号直接跳中跃,dense_rank()则不是,比如数据:

             1,2,2,4,5,6.。。。。这是rank ()的形式

             1,2,2,3,4,5,。。。。这是dense_rank()的形式

             1,2,3,4,5,6.。。。。。这是row_number()涵数形式

row_number()则是按照顺序依次使用,相当于我们普通查询里的rownum值

 

 

其实从上面三个例子当中,不难看出over (partition by ... order by ...)的整体概念,我理解是

partition by :按照指字的字段分区,如果没有则针对全体数据

order by      :按照指定字段进行连续操作(如求和(sum),排序(rank ()等),如果没有指定,就相当于对指定分区集合内的数据进行整体sum操作

 

http://keke-wanwei.iteye.com/blog/138632

首先,要了解rank在英语的意思:等级.也就是说这是一个给数据确定等级的函数.

以销售为例,有地区,年,月,销售员,销售额,记录这五个字段.我们可以按地区,年,月,销售额对销售员进行排序,这样对销售员来说就相当于有一个等级概念了,第一名就是销售最高的......,如果我们要找出每个地区,年,月,销售额的前三名销售员.SQL如何写?

java 代码
  1. SELECT area_code, YEAR, MONTH, saleroom,saler   
  2.        RANK () OVER 
  3.     (PARTITION BY area_code,year ,month ORDER BY area_code,year,month,saleroom ) RANK   
  4. FROM t_sale  

现在RANK 就是1,2,3,3,3,6,有了这个字段,就很容易得到前三名的销售员了.

新问题:销售额50000块在深圳,2007年5月能排到第几?

sql 代码
  1. SELECT    
  2.       RANK('SHENZHEN',2007,5,50000)  WITHIN GROUP    
  3.       (ORDER BY area_code,year,month,saleroom) Rank    
  4. FROM T_SALE  

上面这个SQL就可以搞定了.要注意的是,Rank()里的参数必须为常数,或常值表达式,里面参数的个数,类型也要和order by后字段的类型相对应.

上面就是Rank函数的两个用法.另外还有一个dense_rank(),它的用法和rank()一样,只是计算等级的方式不同.例如上面的

1,2,3,3,3,6.用dense_rank() 就是1,2,3,3,3,4.

 

http://blog.csdn.net/maqinqin/article/details/3320247

若不是这次使用oracle lead,我还不会发现,原来还有这么好用的东西。

     oracle 统计分析函数 lead

     语法结构:

     lead(value_expr [,offset][,default]) over([query_partition_clause] order by Order_by_clause)

     参数说明:

     value_expr 值表达式,通常是字段,也可是是表达式。value_expr本身不支持分析函数,也就是lead不支持多层调用。
     offset 偏移,应该是很熟悉的数学概念了,或者是相对偏移,表格来开当前行的第offset行,如果offset是整数就表示是顺序下的前第n行,如果是负数就是往后第n行。 如果不提供这个参数,就是默认为1.
      default 默认值,如果没有找到,应该返回什么值的意思,有点类似nvl(col,value)。如果没有设置,且找不到,那么就返回Null
      over  可以简单地翻译为在什么。。。的基础之上
      query_partition_clause  分区语句,对结果集合分区的语句,是可选的,如果没有就是所有的一个分区。
      Order_by_clause 排序语句 必须需要 ,形如order by xxx desc/asc

 

     解释示例:
     SQL> select * from test_value;
       
              MONS JJR               CJL       CJJE
        ---------- ---------- ---------- ----------
            200801 LZF               250       1999
            200802 LZF               200       2000
            200803 LZF               300       1000
            200804 LZF                23        189
            200805 LZF               356        456
            200806 LZF               100        200
            200807 LZF               600        700
            200808 LZF                23        123
            200809 LZF               400        500
       
        9 rows selected
       
        SQL>
        SQL> select rownum 序号,Mons,cjl cjl_01,
          2  lead(cjl,1) over (order by mons desc) cjl_02,
          3  lead(cjl,2) over (order by mons desc) cjl_03,
          4  lead(cjl,3) over (order by mons desc) cjl_04,
          5  lead(cjl,4) over (order by mons desc) cjl_05,
          6  lead(cjl,5) over (order by mons desc) cjl_06,
          7  lead(cjl,6) over (order by mons desc) cjl_07,
          8  lead(cjl,7) over (order by mons desc) cjl_08,
          9  lead(cjl,8) over (order by mons desc) cjl_09
         10   from test_value

              序号       MONS     CJL_01     CJL_02     CJL_03     CJL_04     CJL_05     CJL_06     CJL_07     CJL_08     CJL_09
        ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
                 9     200809        400         23        600        100        356         23        300        200        250
                 8     200808         23        600        100        356         23        300        200        250
                 7     200807        600        100        356         23        300        200        250           
                 6     200806        100        356         23        300        200        250                      
                 5     200805        356         23        300        200        250                                 
                 4     200804         23        300        200        250                                            
                 3     200803        300        200        250                                                       
                 2     200802        200        250                                                                  
                 1     200801        250                   

  实践使用示例:          

   select id,lead(id,1)over(partition by  call_req_id order by call_req_id ,id),type,analyst,time_stamp from act_log order by call_req_id ,id

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值