- 博客(1859)
- 资源 (521)
- 收藏
- 关注
原创 靠!我被项目经理和同事嘲笑了,因为不会远程debug调试...
大家好,我是曹尼玛,刚从培训机构毕业,去一家单位上班一周了…这一周项目经理让我熟悉了项目业务,架构和设计,不算难,凭借我培训机构第一名的成绩,还是很顺溜。今天项目经理把同事们叫到一起,说线上438x6项目出现奇葩问题,但是开发环境初步测试没问题,需要配合测试部的小姐姐们在测试环境远程debug跟踪下,排查下问题,以及正式环境日志也会提供,重现下问题,解决下bug;项目经理见我这几天比较悠闲所以就对我说,“曹尼玛,这个小任务就交给你了”“我,我,我,我不会远程debug,没听过什么是远程d.
2021-06-15 08:40:42
432604
464
原创 一个普通java程序员的10年...泪奔 o(╥﹏╥)o o(╥﹏╥)o
大家好,我是曹尼玛,是一个很普通java程序员,今天看了下日期,转眼间,毕业9年,工作10年了,经历比较多,受伤比较多,收获比较多,改变也很多,对未来也有一些规划,对java新人有一些中肯的建议…过去10年的java人生回顾人生回顾,酸甜苦辣,蛋定就好…我的原生家庭和学业本D 89年出生在沿海地区的一个普通农村家庭,一直供我上学,感恩父母!上的是农村小学,乡镇初中,乡镇高中,学习成绩中上,加上教育一般,以及我智商一般,即使努力,也就考了个破本科,选了个不用拼爹的专业-计算机科学与技术。.
2021-05-31 18:14:02
172581
502
原创 我想打老板,作为Java后端程序员,他让我开发电商微信小程序
大家好,我是曹尼玛,我是一名Java后端程序员,每天开心的撸CRUD;然后,今天突变…今天早上老板把我叫到办公室,对我说,“公司最近接了个电商小程序单子,你和王二狗,张傻蛋参与下需求分析和设计,然后下个月开发,3个月内完成测试,上线交付”。卧槽,卧槽,卧槽卧槽,卧槽卧槽卧槽,卧槽卧槽,卧槽,卧槽。。。。。。。。。。。。。。。。。“老板,老板,我没学过微信小程序,我是个Java后端程序员,你再招一个前端微信小程序开发吧”,我很低声的跟老板说。老板很大声的吼道,“不会的东西,不.
2021-05-15 11:50:25
28966
112
原创 【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - 使用Transformers加载预训练模型 - 预训练模型结构文件介绍
《AI大模型应用开发入门教程》介绍了HuggingFace与Transformers生态的核心内容,包括预训练模型加载、微调、评估等关键技术。重点解析了模型文件结构:.gitattributes确保跨平台一致性;README.md提供项目说明;config.json定义模型架构参数;pytorch_model.bin/tf_model.h5存储权重;tokenizer相关文件处理文本分词。特别讲解了BERT配置参数和特殊标记(如[CLS]、[SEP])的作用,以及子词分词技术中"好"与&
2026-01-18 19:52:02
309
原创 【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - 使用Transformers加载预训练模型 - 加载和使用预训练模型实例
《HuggingFace与Transformers入门指南》介绍了AI大模型应用开发的基础知识,重点讲解如何使用HuggingFace生态中的Transformers库。课程内容包括预训练模型加载(如Google BERT)、自定义数据集处理、模型推理与微调等核心内容。通过Pipeline API可快速实现文本分类、情感分析、命名实体识别等常见NLP任务,并详细解析了pipeline方法的各项参数配置。该课程适合开发者快速掌握Transformer模型的应用开发技能。
2026-01-18 19:49:03
492
原创 【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - 使用Transformers加载预训练模型 - cuda,cudnn,Pytorch安装
《AI大模型应用开发入门》课程介绍了HuggingFace与Transformers生态,涵盖预训练模型加载、数据集处理、模型微调与评估等内容。课程强调GPU加速的重要性,详细讲解了CUDA、cuDNN和PyTorch的安装步骤:首先通过nvidia-smi查看CUDA版本,从官网下载对应版本;然后安装匹配的cuDNN库;最后安装支持特定CUDA版本的PyTorch。安装完成后可通过torch.cuda.is_available()验证GPU加速是否可用。该课程为AI大模型开发提供了必要的环境配置指导。
2026-01-17 17:41:57
170
原创 【专辑】AI大模型应用开发入门-拥抱Hugging Face与Transformers生态 - Huggingface与Transformers简介
《AI大模型开发入门:HuggingFace与Transformers生态解析》 摘要: 本文系统介绍了HuggingFace及其核心产品Transformers库的开源生态。HuggingFace作为"AI界的GitHub",提供超200万预训练模型和60万数据集,通过Transformers库简化NLP/CV/语音等多模态开发流程。文章详解其核心功能:Pipeline推理、训练器微调、文本生成等,并对比阿里巴巴ModelScope平台的中文特色。课程涵盖从模型加载、微调到部署的全流程
2026-01-17 17:34:58
1002
原创 Redis6为什么引入了多线程?
Redis6引入多线程主要针对单线程模型的性能瓶颈,通过多线程I/O处理提升性能。核心原因包括:1)解决I/O操作瓶颈;2)提高CPU多核利用率;3)降低延迟;4)提升吞吐量;5)保持简单编程模型。实现上采用主线程处理命令+线程池处理I/O的模式,可通过配置文件调整线程数。这一改进使Redis6能更好地应对高并发场景,在保持一致性的同时显著提升性能。
2026-01-16 22:42:35
636
原创 怎么实现Redis的高可用?
本文介绍了实现Redis高可用的三种方法:主从复制通过异步数据同步确保故障恢复;哨兵模式自动监控和故障转移;集群模式提供分布式高可用方案。文章详细说明了每种方法的配置步骤,并提供了Java代码示例(使用Jedis库),包括主从连接、哨兵连接池和集群操作。这些方案可根据实际需求选择,有效提升Redis系统的稳定性和容错能力,确保在故障时快速恢复,增强应用性能和用户体验。
2026-01-16 22:32:58
599
原创 Redis线上操作最佳实践有哪些?
Redis线上操作最佳实践摘要:合理选择数据结构,避免大对象;配置内存限制和监控策略;选择RDB或AOF持久化并定期备份;采用集群部署优化网络;使用管道化、Lua脚本优化命令;设置监控告警系统;加强密码认证和IP限制;保持版本更新;进行负载测试和灰度发布。这些实践可提升Redis的稳定性、性能和安全性。
2026-01-15 19:41:39
717
原创 Redis为什么把所有数据都放内存?
Redis将所有数据存放在内存中,主要为了追求极致的读写性能。作为内存数据库,Redis利用内存的纳秒级访问速度,实现亚毫秒级响应,适用于高并发场景。其设计理念结合内存速度与持久化机制,支持丰富数据结构及多种淘汰策略。虽然内存容量有限,但可通过集群扩展或混合存储方案解决。Redis坚持内存存储的核心定位,以最大化性能为使命。
2026-01-15 18:42:26
385
原创 了解BERT:让机器理解语言的“超级大脑”
BERT是Google于2018年提出的革命性语言处理模型,采用双向Transformer架构实现上下文理解,显著提升了自然语言处理能力。其核心优势在于双向理解、预训练与微调机制,广泛应用于问答系统、情感分析、机器翻译等领域。虽然BERT需要大量计算资源且缺乏常识推理能力,但它代表了AI语言处理的重大突破。未来随着技术进步,BERT有望进一步提升语言理解深度,缩小人机交互的认知差距。
2026-01-14 21:33:42
455
原创 让AI学会“翻译”自己:Transformer是如何打破机器理解人类语言的壁垒的
Transformer架构彻底改变了机器理解语言的方式。它通过"注意力机制"让AI能同时关注整个句子的所有部分,建立词与词之间的关联,突破了传统逐字处理或局部处理的局限。这种创新不仅催生了GPT、BERT等大语言模型,使机器翻译、摘要和对话更自然,还拓展到图像、音频等领域。Transformer的成功表明,机器可以用不同于人类的方式实现"理解"——通过并行处理全局信息并智能关联。这一架构已成为现代AI的基石,展现了技术创新的独特魅力。
2026-01-14 20:34:57
837
原创 什么是 AI Agent?让人工智能“动起来”的关键技术
AI Agent是一种具备自主决策和行动能力的人工智能系统,能够感知环境、规划任务并执行多步骤操作。与被动响应型AI不同,AI Agent能主动分解复杂目标,通过感知、规划、执行、记忆和学习模块完成全流程任务。目前已在办公助手、编程、客服等领域应用,展现出从"工具"向"伙伴"转变的潜力。尽管存在推理能力有限、稳定性不足等挑战,AI Agent正推动AI向"数字劳动力"进化,未来可能成为每个人的智能助手,实现真正的"第二大脑"功能
2026-01-13 18:27:30
1234
原创 AI蒸馏技术:让AI更智能、更高效
AI蒸馏技术(Knowledge Distillation)通过将大型"教师模型"的知识转移至小型"学生模型",实现模型轻量化。该技术利用教师模型输出的概率分布(软标签)训练学生模型,使其在保持高性能的同时大幅降低计算和存储需求。AI蒸馏显著提升了模型在移动设备、物联网和自动驾驶等资源受限场景的部署能力,解决了复杂AI模型难以在低配置设备运行的问题,为人工智能的普及应用提供了关键技术支撑。
2026-01-13 18:05:29
660
原创 MySQL中的乐观锁和悲观锁是什么?
MySQL中的乐观锁和悲观锁是两种并发控制策略。悲观锁假设并发冲突频繁,在操作前加锁(如FOR UPDATE),确保独占访问,适合高并发写场景但可能降低性能。乐观锁不加锁,通过版本号或时间戳检测冲突,仅在更新时检查数据是否被修改,适合低冲突场景,性能更高。悲观锁通过锁机制实现,乐观锁则依赖版本控制。选择取决于具体场景:高竞争用悲观锁,低冲突用乐观锁。
2026-01-11 18:22:46
536
原创 分享一套优秀的基于Python的天气预报(天气预测分析)(Django+sklearn机器学习+selenium爬虫)可视化系统
本文介绍了一个基于Python的天气预报可视化系统,整合了Django框架、sklearn机器学习和Selenium爬虫技术。系统通过Selenium爬虫抓取多源气象数据,经清洗处理后存入数据库,利用机器学习分析预测天气趋势,并通过Django实现可视化展示。系统提供实时天气查询、未来预测及多种图表展示功能,提升了数据获取效率和用户体验。该项目为气象服务提供了新的技术方案,并具备扩展应用潜力。附源码下载链接。
2025-12-29 08:10:18
1986
2
ArcGIS+for+Android+2.0开发教程基础版
2019-10-22
Innodb-Architecture-Performance-Optimization
2019-10-22
Springboot开源在线教育平台说明文档PDF
2020-07-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅