(1) NumberSolitaire
一个游戏是从一排N个格子开始,格子编号0..N - 1,起初,棋子在A[0],每个格子里有一个整数(可能正,可能负)。你在格子I,你扔骰子,得到点数X = [1..6],然后走到编号为I + X的格子,如果这个格子不存在就再投一次骰子,直到I + X号格子存在。你走到N - 1号格子时,游戏结束。你所经过格子里的整数的和是你的得分,求最大可能得分?
数据范围: N [2..10^5], 格子里的数的范围 [-10000, +10000]。
要求复杂度: 时间O(N),空间O(N)
分析: 一个显然的dp dp[i] = A[i] + max(dp[i - x]) 1<=x<=min(6,i)
代码:
// you can use includes, for example:
// #include <algorithm>
// you can write to stdout for debugging purposes, e.g.
// cout << "this is a debug message" << endl;
int solution(vector<int> &A) {
// write your code in C++11
const int inf = 2000000000;
int n = A.size();
vector<int> dp(n);
dp[0] = A[0];
for (int i = 1; i < n; ++i) {
dp[i] = -inf;
for (int j = min(6 , i); j; --j) {
dp[i] = max(dp[i], dp[i - j]);
}
dp[i] += A[i];
}
return dp[n - 1];
}
(2) MinAbsSum
http://blog.csdn.net/caopengcs/article/details/10028269