牛客挑战赛53C

C-奇奇怪怪的魔法阵_牛客挑战赛53 (nowcoder.com)

出题人的题解很简洁,直接dp(S)表示S集合内有多少个独立集子集,然后考察S中随便一个元素i的情况,由之前状态转移过来,复杂度(2^n)
但是事实上这道题可以通过折半枚举的方法优化到(n * 2^(n/2))。
首先,按照题目中的说法一个一个求每个集合内独立子集个数肯定不能找到更快的算法,因为此时枚举每个集合就要(2^n),复杂度不会低于这个下界。因此,考虑将最终答案的式子化简一下:

\Sigma_{T \subseteq N}(233^{\Sigma_{i \in T}2^i}*\Sigma_{S \subseteq T}[S \quad is \quad independence \quad set])

=\Sigma_{S \subseteq N}[S \quad is \quad independence \quad set] * \Sigma_{S \subseteq T \subseteq N}233^{\Sigma_{i \in T}2^i}    

=Sigma_{S \subseteq N}[S \quad is \quad independence \quad set] * \Pi_{i \in S}233^{2^i}* \Pi_{j \notin S}(1 + 233^{2^j})

就是先交换一下枚举顺序,再把后面一项打开

那么现在问题就是对于每个独立集,计算它对最终答案贡献的一个式子,先考虑dp

为了方便dp,此时我们可以把i的权值val(i)记为

233^{2^i}/(1+233^{2^i})

然后转移时,枚举到集合S,首先判断这个S是否可行,如果可行,对于dp(S),就可以随便枚举一个元素i,dp(S) = dp(S - {i}) * val[i],最终统计答案时每个dp(S)乘上

\Pi_{i = 0}^{n-1}(1 + 233^{2^i})

后加入答案即可。

之后发现这个dp是可以用折半枚举优化的

因为考虑一个是独立集的集合S,我们处理出S集合内所有邻接点的集合cant,那么N-S中一个集合T能并上S仍然是独立集,当且仅当T是独立集且T交cant为空集。

而根据dp的转移式子,dp[S * T] = dp[S] * dp[T],运用类似前缀和优化的技巧,我们就可以先dp处理前一半点的集合,求出dp值,然后对集合求前缀和(即每个位置的值加上所有它的子集位置值),记为sum。

然后,再类似第一遍求后一半dp值,同时统计前后合并的贡献。假设当前枚举到S, 它的邻接点为cant_S,则可以得到这个S与之前一半的集合合并产生贡献为dp[S] * sum[前一半集合 - cant_S]

复杂度瓶颈在集合前缀和那一步,用fwt中集合并卷积的正变换复杂度为O(n * 2^(n/2))

#include<bits/stdc++.h>
#define pii pair<int,int>
#define fi first
#define sc second
#define pb push_back
#define ll long long
#define trav(v,x) for(auto v:x)
#define all(x) ((x).begin(), (x).end())
#define VI vector<int>
#define VLL vector<ll>
using namespace std;
const int N = 26;
const int inf = 1e9;
const int mod = 1e9 + 7;

int n, m;
int a[N];

int hav[N], val[N], dp[1 << 14], sum[1 << 14];

int qpow(int x, int y)
{
	int res = 1;
	while(y)
	{
		if(y & 1)
			res = 1LL * res * x % mod;
		x = 1LL * x * x % mod;
		y >>= 1;
	}
	return res;
}

signed main()
{
	ios::sync_with_stdio(0);
	cin.tie(0);
	cin >> n >> m;
	for(int i = 1; i <= m; i++)
	{
		int x, y;
		cin >> x >> y;
		hav[x] |= (1 << y);
		hav[y] |= (1 << x);
	}
	int bas = 1;
	for(int i = 0; i < n; i++)
		bas = 1LL * bas * (qpow(233, 1 << i) + 1) % mod;
	for(int i = 0; i < n; i++)
	{
		val[i] = qpow(233, 1 << i);
		val[i] = 1LL * val[i] * qpow(qpow(233, 1 << i) + 1, mod - 2) % mod;
	}
	int mid = n / 2;
	int ans = 0;
	int lim = 1 << mid;
	for(int S = 0; S < lim; S++)
	{
		if(S == 0)
		{
			dp[S] = bas;
			ans = (ans + dp[S]) % mod;
			continue;
		}
		int cant = 0;
		for(int i = 0; i < mid; i++)
		{
			if(S & (1 << i))
				cant |= hav[i];
		}
		if(cant & S)
			continue;
		int las = S & (-S), ps = __builtin_ffs(S) - 1;
		dp[S] = 1LL * dp[S - las] * val[ps] % mod;
		ans = (ans + dp[S]) % mod;
	}
	for(int l = 2, md = 1; l <= lim; l <<= 1, md <<= 1)
       for(int i = 0; i < lim; i += l)
           for(int j = 0; j < md; j++)
               dp[i + j + md] = (dp[i + j + md] + dp[i + j]) % mod;
    memcpy(sum, dp, sizeof dp);
    memset(dp, 0, sizeof dp);
    lim = (1 << (n - mid));
    dp[0] = 1;
    for(int S = 1; S < lim; S++)
	{
		int cant = 0, cantl, cantr;
		for(int i = 0; i < (n - mid); i++)
		{
			if(S & (1 << i))
				cant |= hav[i + mid];
		}
		cantl = cant & ((1 << mid) - 1);
		cantr = cant - cantl;
		cantr >>= mid;
		if(cantr & S)
			continue;
		int las = S & (-S), ps = __builtin_ffs(S) - 1;
		dp[S] = 1LL * dp[S - las] * val[ps + mid] % mod;
		ans = (ans + 1LL * dp[S] * sum[(1 << mid) - 1 - cantl]) % mod;
	}
	cout << ans << '\n';
	return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值