显然跟串具体是什么无关,仅跟操作数n、串长m有关
然后考虑定下结尾m个元素,现在问题发现此时要达到n个操作步数,就相当于在这m个元素空隙间(包括第一个元素前、最后一个元素后)插入n - m括号的方案数(左括号为插入0/1,右括号为退格操作,其中可以有无效右括号,但每个左括号必须匹配),然后再乘上2^(左括号数)。
进一步我们能够发现,整体来考虑,方案数就相当于构建一个长为n的括号序(可以有一些无效的右括号,表示空的时候退格),最终没能匹配的左括号有m个的方案数乘上 2 ^ (t - m), 其中t为放下的实际左括号个数,可以用一个n^2的简单dp解决。
#include<bits/stdc++.h>
#define pii pair<int,int>
#define fi first
#define sc second
#define pb push_back
#define ll long long
#define trav(v,x) for(auto v:x)
#define all(x) (x).begin(), (x).end()
#define VI vector<int>
#define VLL vector<ll>
#define pll pair<ll, ll>
#define double long double
//#define int long long
using namespace std;
const int N = 1e6 + 100;
const int inf = 1e9;
//const ll inf = 1e18;
const ll mod = 1e9 + 7;
#ifdef LOCAL
void debug_out(){cerr << endl;}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T)
{
cerr << " " << to_string(H);
debug_out(T...);
}
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
ll qpow(ll x, ll y = mod - 2)
{
ll res = 1;
while(y)
{
if(y & 1)
res = res * x % mod;
x = x * x % mod;
y >>= 1;
}
return res;
}
void sol()
{
int n, m;
cin >> n;
string s;
cin >> s;
m = s.length();
vector<VLL> f(n + 1, VLL(n + 1, 0));
f[0][0] = 1;
for(int i = 1; i <= n; i++)
{
for(int j = 0; j <= i - 1; j++)
{
f[i][j + 1] = (f[i][j + 1] + f[i - 1][j] * 2) % mod;
if(j > 0)
f[i][j - 1] = (f[i][j - 1] + f[i - 1][j]) % mod;
else
f[i][j] = (f[i][j] + f[i - 1][j]) % mod;
}
}
ll tmp = qpow(2, m);
tmp = qpow(tmp);
ll ans = f[n][m] * tmp % mod;
cout << ans << '\n';
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
// int tt;
// cin >> tt;
// while(tt--)
sol();
}