猜一下就知道最后划分要么是1,要么是2,要么是n
1就是开始就没有整除的周期,n就是字符全等,这两类方案均为1
然后考虑2的方案,对每个前缀、后缀看看有没有整除的周期即可(一共要check的就是nlogn个,二分哈希、Z函数之类随便搞一下)
这个结论证明也比较简单:考虑s这个串不全等,有一个大于1且小于等于n / 2且整除n的周期p,然后考察划分为n - 1, 1两段,则若这个划分不可行,同理得到s[1...n - 1]这个前缀有一个大于1且小于等于(n - 1) / 2且整除n - 1的周期q,而因为p也是这个前缀的一个周期,由字符串周期的dilemma就能知道gcd(p, q) = 1是这个前缀的周期,得到前n - 1个字符此时必然完全相同,那么此时又因为根据假设,整个串有一个大于1且小于等于n / 2且整除n的周期p,得到整个串全等,产生矛盾。
所以一定至多划分两份
#include<bits/stdc++.h>
#define pii pair<int,int>
#define fi first
#define sc second
#define pb push_back
#define ll long long
#define trav(v,x) for(auto v:x)
#define all(x) (x).begin(), (x).end()
#define VI vector<int>
#define VLL vector<ll>
#define pll pair<ll, ll>
#define double long double
//#define int long long
using namespace std;
const int N = 1e6 + 100;
const int inf = 1e9;
//const ll inf = 1e18;
const ll mod = 998244353;//1e9 + 7;
#ifdef LOCAL
void debug_out(){cerr << endl;}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T)
{
cerr << " " << to_string(H);
debug_out(T...);
}
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif
void sol()
{
string s;
cin >> s;
int n = s.length();
//same
bool flg = 1;
for(int i = 1; i < n; i++)
{
if(s[i] != s[0])
flg = 0;
}
if(flg)
{
cout << n << '\n' << 1 << '\n';
return;
}
VI Z(n), pre(n), suf(n);
auto calc = [&]()
{
int lp = -1, rp = -1;
for(int i = 1; i < n; i++)
{
if(i <= rp && Z[i - lp] < rp - i + 1)
Z[i] = Z[i - lp];
else
{
int k = max(0, rp - i + 1);
while(i + k < n && s[i + k] == s[k])
++k;
Z[i] = k;
}
if(i + Z[i] - 1 > rp)
lp = i, rp = i + Z[i] - 1;
}
};
calc();
vector<VI> hav(n + 1);
for(int i = 1; i <= n; i++)
{
for(int j = i + i; j <= n; j += i)
{
hav[j].pb(j - i);
}
}
for(int i = 0; i < n; i++)
{
pre[i] = 1;
trav(d, hav[i + 1])
{
if(Z[i - d + 1] >= d)
{
pre[i] = 0;
break;
}
}
}
if(pre[n - 1])
{
cout << 1 << ' ' << 1 << '\n';
return;
}
reverse(all(s));
calc();
for(int i = 0; i < n; i++)
{
suf[i] = 1;
trav(d, hav[i + 1])
{
if(Z[i - d + 1] >= d)
{
suf[i] = 0;
break;
}
}
}
reverse(all(suf));
ll ans = 0;
for(int i = 0; i < n - 1; i++)
{
if(pre[i] && suf[i + 1])
++ans;
}
cout << 2 << '\n' << ans << '\n';
}
signed main()
{
ios::sync_with_stdio(0);
cin.tie(0);
// int tt;
// cin >> tt;
// while(tt--)
sol();
}