arc060 F - Best Representation

猜一下就知道最后划分要么是1,要么是2,要么是n

1就是开始就没有整除的周期,n就是字符全等,这两类方案均为1

然后考虑2的方案,对每个前缀、后缀看看有没有整除的周期即可(一共要check的就是nlogn个,二分哈希、Z函数之类随便搞一下)

这个结论证明也比较简单:考虑s这个串不全等,有一个大于1且小于等于n / 2且整除n的周期p,然后考察划分为n - 1, 1两段,则若这个划分不可行,同理得到s[1...n - 1]这个前缀有一个大于1且小于等于(n - 1) / 2且整除n - 1的周期q,而因为p也是这个前缀的一个周期,由字符串周期的dilemma就能知道gcd(p, q) = 1是这个前缀的周期,得到前n - 1个字符此时必然完全相同,那么此时又因为根据假设,整个串有一个大于1且小于等于n / 2且整除n的周期p,得到整个串全等,产生矛盾。

所以一定至多划分两份

#include<bits/stdc++.h>
#define pii pair<int,int>
#define fi first
#define sc second
#define pb push_back
#define ll long long
#define trav(v,x) for(auto v:x)
#define all(x) (x).begin(), (x).end()
#define VI vector<int>
#define VLL vector<ll>
#define pll pair<ll, ll>
#define double long double
//#define int long long
using namespace std;
const int N = 1e6 + 100;
const int inf = 1e9;
//const ll inf = 1e18;
const ll mod = 998244353;//1e9 + 7;

#ifdef LOCAL
void debug_out(){cerr << endl;}
template<typename Head, typename... Tail>
void debug_out(Head H, Tail... T)
{
	cerr << " " << to_string(H);
	debug_out(T...);
}
#define debug(...) cerr << "[" << #__VA_ARGS__ << "]:", debug_out(__VA_ARGS__)
#else
#define debug(...) 42
#endif

void sol()
{
	string s;
	cin >> s;
	int n = s.length();
	//same
	bool flg = 1;
	for(int i = 1; i < n; i++)
	{
		if(s[i] != s[0])
			flg = 0;
	}
	if(flg)
	{
		cout << n << '\n' << 1 << '\n';
		return;
	}
	VI Z(n), pre(n), suf(n);
	auto calc = [&]()
	{
		int lp = -1, rp = -1;
		for(int i = 1; i < n; i++)
		{
			if(i <= rp && Z[i - lp] < rp - i + 1)
				Z[i] = Z[i - lp];
			else
			{
				int k = max(0, rp - i + 1);
				while(i + k < n && s[i + k] == s[k])
					++k;
				Z[i] = k;
			}
			if(i + Z[i] - 1 > rp)
				lp = i, rp = i + Z[i] - 1;
		}
	};
	calc();
	vector<VI> hav(n + 1);
	for(int i = 1; i <= n; i++)
	{
		for(int j = i + i; j <= n; j += i)
		{
			hav[j].pb(j - i);
		}
	}
	for(int i = 0; i < n; i++)
	{
		pre[i] = 1;
		trav(d, hav[i + 1])
		{
			if(Z[i - d + 1] >= d)
			{
				pre[i] = 0;
				break;
			}
		}
	}
	if(pre[n - 1])
	{
		cout << 1 << ' ' << 1 << '\n';
		return;
	}
	reverse(all(s));
	calc();
	for(int i = 0; i < n; i++)
	{
		suf[i] = 1;
		trav(d, hav[i + 1])
		{
			if(Z[i - d + 1] >= d)
			{
				suf[i] = 0;
				break;
			}
		}
	}
	reverse(all(suf));
	ll ans = 0;
	for(int i = 0; i < n - 1; i++)
	{
		if(pre[i] && suf[i + 1])
			++ans;
	}
	cout << 2 << '\n' << ans << '\n';
}

signed main()
{
	ios::sync_with_stdio(0);
	cin.tie(0);
//	int tt;
//	cin >> tt;
//	while(tt--)
		sol();
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值