prim算法求最小生成树

给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。

求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。

由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。

输入格式
第一行包含两个整数n和m。

接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。

输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。

数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。

输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6

prim算法思路核心:
对于每一次都要寻找离这个set最近的元素,dis[i]数组记录下标为i的元素到set的最短距离,dis[j]=min(dis[j],d[t][j]);这个表达式起着一个记忆的作用,就是每一次循环都会继承之前的记忆,所以我们迭代之后求出的这个dis一定是最小的

#include<bits/stdc++.h>
using namespace std;

int n,m;
const int N=520;
int d[N][N];
bool jud[N];
int dis[N];//到set的距离 
int u,v,w;
const int INF=0x3f3f3f3f; 
int res;
void prim(){
	
	for(int i=0;i<n;i++){
		int t=-1;
		for(int j=1;j<=n;j++){
			if(!jud[j]&&(t==-1||dis[j]<dis[t])){
				t=j;
			}
			
		}
		jud[t]=1;
		if(i&&dis[t]==INF){//割裂了 
			puts("impossible");
			return;
		}
		if(i){
			res+=dis[t];//dis数组记录的是set外面的点到set的最短距离 
		}
		//更新
		for(int j=1;j<=n;j++){
			dis[j]=min(dis[j],d[t][j]);
		} 
	}
		cout<<res;
		return; 
	
}
int main(){
	cin>>n>>m;
	memset(d,0x3f,sizeof d);
	memset(dis,0x3f,sizeof dis);
	while(m--){
		cin>>u>>v>>w;
		d[u][v]=d[v][u]=min(d[u][v],w);
	}
	
	prim();
	
	
	
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值