给定一个n个点m条边的无向图,图中可能存在重边和自环,边权可能为负数。
求最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
给定一张边带权的无向图G=(V, E),其中V表示图中点的集合,E表示图中边的集合,n=|V|,m=|E|。
由V中的全部n个顶点和E中n-1条边构成的无向连通子图被称为G的一棵生成树,其中边的权值之和最小的生成树被称为无向图G的最小生成树。
输入格式
第一行包含两个整数n和m。
接下来m行,每行包含三个整数u,v,w,表示点u和点v之间存在一条权值为w的边。
输出格式
共一行,若存在最小生成树,则输出一个整数,表示最小生成树的树边权重之和,如果最小生成树不存在则输出impossible。
数据范围
1≤n≤500,
1≤m≤105,
图中涉及边的边权的绝对值均不超过10000。
输入样例:
4 5
1 2 1
1 3 2
1 4 3
2 3 2
3 4 4
输出样例:
6
prim算法思路核心:
对于每一次都要寻找离这个set最近的元素,dis[i]数组记录下标为i的元素到set的最短距离,dis[j]=min(dis[j],d[t][j]);这个表达式起着一个记忆的作用,就是每一次循环都会继承之前的记忆,所以我们迭代之后求出的这个dis一定是最小的
#include<bits/stdc++.h>
using namespace std;
int n,m;
const int N=520;
int d[N][N];
bool jud[N];
int dis[N];//到set的距离
int u,v,w;
const int INF=0x3f3f3f3f;
int res;
void prim(){
for(int i=0;i<n;i++){
int t=-1;
for(int j=1;j<=n;j++){
if(!jud[j]&&(t==-1||dis[j]<dis[t])){
t=j;
}
}
jud[t]=1;
if(i&&dis[t]==INF){//割裂了
puts("impossible");
return;
}
if(i){
res+=dis[t];//dis数组记录的是set外面的点到set的最短距离
}
//更新
for(int j=1;j<=n;j++){
dis[j]=min(dis[j],d[t][j]);
}
}
cout<<res;
return;
}
int main(){
cin>>n>>m;
memset(d,0x3f,sizeof d);
memset(dis,0x3f,sizeof dis);
while(m--){
cin>>u>>v>>w;
d[u][v]=d[v][u]=min(d[u][v],w);
}
prim();
return 0;
}