1.论文链接
Get To The Point: Summarization with Pointer-Generator Networks
2.论文主要为了解决什么问题
- 作者想要提高信息摘要提取的效率,具体来说,既要有extract,又要有generate。
- 作者想要改进传统的seq2seq with attention(对应generate)和Pointer networks(对应extract)在生成文本的时候,会有重复输出的问题。
具体的重复输出可见下图

3.模型流程

3.1 seq2seq
首先用seq2seq进行生成新词,然后保存概率

接下来经过处理得到了在整个词汇表中的概率


本文介绍了一种结合指针网络和seq2seq模型的新型总结提取方法,旨在提高信息摘要的效率并减少重复输出。该模型通过引入覆盖机制来解决传统方法在生成文本时存在的问题。
最低0.47元/天 解锁文章
1084

被折叠的 条评论
为什么被折叠?



