A CommonTopic Transfer Learning Model Crossing City POI Recommendations论文泛读

摘要:随着移动感知设备的流行(比如安卓终端),大量的用户信息(比如用户的数据)产生。这些数据使用机器学习的理论,模拟了POI推荐的工作。但是现在的POI推荐技术不能解决这样的问题——一个人的朋友或者他自身没有去过某些地方,在用户信息比较少的情况下如何产生POI推荐?
文章提出了一种关于跨越城市的POI推荐的通用的话题迁移学习的图论模型(a common topic transfer learning graphical model)——通用话题迁移模型(CTLM)。
该模型将每个城市的特定主题(或特征)从所有城市共享的公共主题(或特征)中分离出来,使用户在源城市的真实兴趣转移到目标城市。(翻译结果,我的理解是:从用户喜欢的城市中提取特征,经过加工应用到新的城市中去。)这样做可以预防来自不同城市的POIs和用户的错误匹配问题的发生。此外,作者通过引入区域的可达性,将空间影响纳入到它提出的模型中。因此,将用户与POIs的共现模式(co-occurence patterns)建模为这些因素的聚合结果(aggregated result)。
为了评估CTLM(通用话题迁移模型),在数据集Foursquare和Twitter上面进行了实验。实验结果表明了相对于最新的POIs跨城市推荐,CTLM模型有许多优点。
关键词:图形模型,机器学习,推荐系统,转移学习

文章的贡献:
1.针对跨城市POI推荐,提出了一种新的基于迁移学习的嵌入式(embedded)图形化模型,该模型将每个城市的特定主题与所有城市共享的共同主题分离开来,并通过共同主题的媒介将用户的真实兴趣从源城市转移到目标城市。通过这种处理,可以很好地解决不同城市用户与POIs之间的不匹配问题
2.为了融合(incorporate)时空特征(spatial-temporal features),我们引入了区域可达性,并将时间分割成小块来学习时间主题。这样,建议列表可以通过共同考虑公共主题(commom topics)、城市特定主题(city-specific topics)和时空特征(spatial-temporal)来细化。
3.在两个真实的数据集上进行了广泛的实验来评估模型的性能。结果表明,提出的模型在精确度和召回率(recall)方面都优于目前最先进的方法。此外,通过对三种不同类型的共话题迁移学习模型(CTLM)进行比较,研究了不同因素的影响。

转自分析文章的作者:
在这里插入图片描述

在这里插入图片描述
第一部分 介绍
A动机
B贡献
C文章组织结构
第二部分 文章的一些问题定义、记号
第三部分 CTLM模型的具体细节
第四部分 实验结果
第五部分 对于已经存在的POI推荐相关的工作评价

第二部分 前言
定义一 签到记录(u(代表了用户),v(代表了POIs),LV(代表了POI的地点,用经纬度表示),WV(代表了POI的内容,用许多单词表示),c(代表了POI的城市))
定义二 城市描述(DC = {(u,v,t,lv,wv,c)})数据库包含了很多个DC
问题定义:给定一个城市描述文件D,包含了很多个DC,给定一个目标用户u,一个u想去但没有去过的的目标城市c,一个特定的时间t,POI推荐旨在向u推荐目标城市列表

A Common Topics for Transfer Learning
原来用户经过的城市(source)和目标推荐的城市(target)之间没有联系,但是source会和common topic建立联系,来给出推荐。

B Model Description
关于提出的模型中许多变量的解释
比如Generating Switch Indicators、Generating Common Topics、Generating City-Specific Topic、Generating Regions的含义。
“我们的CTLM以统一的方式,将区域可达性、共同话题、城市特定话题结合在一起。因此,共同话题可以转移的知识,从用户源城市目标城市和发现用户和POIs的同现模式在目标城市,根据他们的“真实”的利益,而city-specific主题可以提取目标的最具体的POIs城市用户。此外,区域的可访问性使得用户能够访问流行区域的POIs。详细介绍了CTLM的生成过程Alg”
整理:CTLM糅合了区域可达性、共同话题、城市特定话题。通用话题可以根据用户的真实interests,从用户的原城市到目的城市的迁移知识,从而发现目标城市的用户和POIs的“co-occurence”。而且区域的可达性使得用户去访问受欢迎地区的POIs。具体的细节部分在算法一中描述。

C 参数推导
D 基于CTLM(通用话题迁移模型)模型的推荐
CTLM的目的是通过用户在原来的城市的签到记录,列出新城市中的许多POIs的推荐记录。
E 时间复杂度的分析
分析推导过程的时间复杂度。

第四部分 实验
A 实验环境的设立
(1)数据集:Foursquare 、Twitter
签到记录的字段:user-ID 、POI-ID 、time、contents、location、city
方案:从Fousqure数据集选出俩个地点,再从Twitter选出俩个地点。首先把选择访问过source和target的用户,将这些用户作为ground truth;其次将ground truth划分为俩类,一类去调整参数;一类用来评估算法,在评估算法时候再细分为五类不相交的集合进行交叉验证
(2)论文提出前最新的方法——五种

link:https://github.com/tiankonghenlan20113046/POI

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值