矩阵理论
饼干饼干圆又圆
这个作者很懒,什么都没留下…
展开
-
矩阵理论复习(十三)——最后一章
若A是正规矩阵,则属于不同特征值的特征向量必正交。至少存在一个矩阵范数,使得||A||原创 2023-06-06 06:57:03 · 291 阅读 · 0 评论 -
矩阵理论复习(十二)
已知方阵A的不变因子:任何相容矩阵范数都存在与之相容的向量范数。盖尔圆盘定理一的证明椭圆范数的证明若||.||是Cm上的向量范数,A为列满秩矩阵,则||A.||是Cn上的向量范数。椭圆范数的应用Rayleigh商R(A+)=R(AH)A+=AH(AAH)+=(AHA)+AH当A的某算子范数小于1时,证明E-A可逆证明自反广义逆证明G=YZ是A的自反广义逆B=[A+ A+]设T是线性空间V上的投影,则投影的值域和核互为直和补。维数定理直和正规矩阵A的特征值的模原创 2023-02-16 18:51:18 · 1771 阅读 · 0 评论 -
矩阵理论复习(十一)
零元素、负元素唯一。原创 2023-02-09 15:32:34 · 3377 阅读 · 0 评论 -
矩阵理论复习(十)
直和:线性空间中两个子空间的一种特殊关系。投影投影的值域和核互为直和补投影算子与投影矩阵设T是线性空间V上的投影,则V=R(T)直和N(T)M-P广义逆矩阵是唯一的。A+是唯一的算子二范数与矩阵二范数的关系算子范数证明题设矩阵A的最大秩分解为A=BC,证明:Ax=0的充要条件是Cx=0设A为正定矩阵,则det(A)≤对角线元素的乘积,当且仅当A为对角矩阵时等式才成立。求谱分解A是三角矩阵,则A是正规矩阵的充要条件是A是对角矩阵正规矩阵A是幂零阵(A2)的充要条件原创 2023-02-06 15:19:16 · 1300 阅读 · 0 评论 -
矩阵理论复习(九)
最佳逼近解最小二乘解A是左可逆的充要条件是A为列满秩矩阵A是左可逆的充要条件是NA={0}投影矩阵N(A)=R(I-A),N(I-A)=R(A)A是右可逆的充要条件是R(A)=Cm求A的一个左逆矩阵求A的一个右逆矩阵单边逆矩阵不唯一左逆矩阵与求解方程组Ax=b之间的关系右逆矩阵与求解Ax=b之间的关系可逆矩阵相乘不改变矩阵的秩广义逆矩阵不唯一G为广义逆矩阵的充要条件AGA=A广义逆矩阵的秩大于等于矩阵的秩rank(A)=n的充要条件是A-A=EnA的自反广义逆矩原创 2023-02-03 13:36:17 · 2340 阅读 · 1 评论 -
矩阵理论复习(八)
由于A为实阵,所以A的n个盖尔圆的圆心都在实轴上,又由于这n个盖尔圆互不相交,所以A的n个特征值互不相等,且每个圆盘只有一个特征值。实矩阵若有复特征值,必在实轴的上下方对称排列,若有一个复特征值位于A的某一盖尔圆上,则与其成共轭的特征值也必在该圆盘上。任何方阵A的非零特征值的个数不超过矩阵的秩。R(x)的最值与矩阵A的特征值之间的关系。A是正定Hermite矩阵,则存在唯一正线上三角复矩阵,使得A=RHR。若A是行满秩矩阵原创 2023-02-01 10:54:43 · 533 阅读 · 1 评论 -
矩阵理论复习(七)
Hermite矩阵,也称为自共轭矩阵。矩阵中第i行第j列的元素与第j行第i列的元素共轭相等,主对角线上的元素都是实数,其特征值也是实数。矩阵的特征值小于其任意的相容的矩阵范数,但矩阵无穷大范数不是相容的矩阵范数。严格对角占优矩阵为可逆矩阵。幂等矩阵的特征值非零即1.原创 2023-01-30 16:19:22 · 572 阅读 · 0 评论 -
矩阵理论复习(六)
数域的定义线性空间的定义线性空间的基和维数子空间的定义子空间的判别方法最常见的线性空间判断下列集合是否属于线性空间证明线性空间求线性空间的维数和基不同的矩阵证明一个空间是线性子空间V中存在向量,不属于两个非平凡子空间线性变换的定义线性变换的性质线性变换的矩阵表示基变换坐标变换相似矩阵的本质:同一线性变换在不同基下的矩阵。相似矩阵矩阵相同的特征值在无线通信、雷达、时间序列分析和信号处理等领域中,许多问题的最优解可归结为:提取某个所希望的信号,而抑制掉其它所有干扰、杂波或原创 2023-01-25 09:13:26 · 1678 阅读 · 0 评论 -
矩阵理论复习(五)
Hermite矩阵酉相似于对角阵验证相容矩阵范数盖尔圆盘互不相交,则特征值都不相同,若盖尔圆盘全部出现在右半复平面上,则特征值全为实数。矩阵二范数的计算最大秩分解+M-P广义逆矩阵+方程是否有解正定矩阵,对任意非零向量X,其正定二次型都大于0矩阵二范数与特征值之间的转换AA-为幂等矩阵,幂等矩阵特征值非零即一,A≠0,rank(A)=rank(AA-)≥1,所以AA-特征值必为1初等酉变换对应的酉矩阵,酉矩阵的算子范数为1矩阵的特征值小于等于任意相容的矩阵范数严格对角占优矩阵,A的最原创 2022-12-11 11:33:59 · 6386 阅读 · 0 评论 -
矩阵理论复习(四)
向量二范数也具有酉不变性。原创 2022-12-10 07:20:35 · 1189 阅读 · 0 评论 -
矩阵理论复习(三)
矩阵范数的定义矩阵范数的性质Pmxn上的任意两个矩阵范数均等价。相容的矩阵范数Frobenius范数单位矩阵的几种矩阵范数与向量范数相容的矩阵范数矩阵1范数是与向量1范数相容的矩阵范数矩阵2范数是与向量2范数相容的矩阵范数算子范数的定义算子范数是与向量范数相容的矩阵范数中最小的一个算子范数的计算谱范数的性质QR分解判断题AHA与AAH奇异值的概念酉等价与酉相似奇异值分解判断题相似矩阵具有相同的特征值。矩阵A的特征值的几何重复度不大于其代数重复度。若矩阵A的代数重复原创 2022-11-08 09:56:01 · 2193 阅读 · 0 评论 -
矩阵理论复习(二)
内积空间的定义模与内积向量x和y的夹角正交向量、正交组和正交矩阵度量矩阵基向量内积、度量矩阵、任意向量内积之间的关系欧式空间的两个基对应的度量矩阵彼此合同度量矩阵的行列式的几何问题正交补子空间内积空间=子空间U与U的正交补子空间的直和正交补子空间的性质和应用值域和零空间的正交补关系正交投影内积空间中的线性变换——保距变换T是等距变换——对应的A是酉矩阵设A是Hermite矩阵,若对于任意向量x均有xHAx=0,则A=0等距变换Householder变换Givens变换原创 2022-11-05 17:51:06 · 7985 阅读 · 1 评论 -
矩阵理论复习(一)
证明一个空间是线性空间求线性空间的基和维数特殊矩阵子空间判别法设V1、V2是线性空间V的两个非平凡子空间, 则V中存在向量α, 使α∉V1、α∉V2同时成立矩阵与线性变换的定义线性变换的性质线性变换的矩阵表示基变换与坐标变换线性空间有不同的基,在不同基下同一线性变换的矩阵的联系?相似矩阵具有相同的特征值、行列式和迹矩阵的迹投影算子定理一原创 2022-11-04 12:08:28 · 1047 阅读 · 0 评论