题目描述:
zjm被困在一个三维的空间中,现在要寻找最短路径逃生!
空间由立方体单位构成。
zjm每次向上下前后左右移动一个单位需要一分钟,且zjm不能对角线移动。
空间的四周封闭。zjm的目标是走到空间的出口。
是否存在逃出生天的可能性?如果存在,则需要多少时间?
输入:
输入第一行是一个数表示空间的数量。
每个空间的描述的第一行为L,R和C(皆不超过30)。
L表示空间的高度,R和C分别表示每层空间的行与列的大小。
随后L层,每层R行,每行C个字符。
每个字符表示空间的一个单元。’#‘表示不可通过单元,’.‘表示空白单元。
zjm的起始位置在’S’,出口为’E’。每层空间后都有一个空行。
L,R和C均为0时输入结束。
输出:
每个空间对应一行输出。
如果可以逃生,则输出如下
Escaped in x minute(s).
x为最短脱离时间。
如果无法逃生,则输出如下
Trapped!
sample:
input:
3 4 5
S….
.###.
.##…
###.#
##.##
##…
#.###
####E
1 3 3
S##
#E#
0 0 0
output:
Escaped in 11 minute(s).
Trapped!
题目分析:
实际上就是一个三维的迷宫问题,实际上二维的迷宫问题的方法只需要扩展到三维就能直接用。只不过这里的起点和终点不是直接给出,需要我们来通过判断输入来直接看,当然数据很小,所以不用担心超时,直接扫一遍就可以了。
for(int i=0;i<l;i++)
{
for(int j=0;j<r;j++)
{
for(int k=0;k<c;k++)
{
if(a[i][j][k]=='S')
{
sx=j;
sy=k;
sz=i;
}
else if(a[i][j][k]=='E')
{
tx=j;
ty=k;
tz=i;
}
}
}
}
二维的迷宫问题里面我们需要xy两个量,三维就需要三个量xyz。
struct point
{
int x;
int y;
int z;
};
然后我们需要一个距离矩阵来求出距离,还需要一个bool数组来判断是否到达。
int dis[30][30][30];
bool vis[30][30][30];
原来二维的迷宫需要走四个方向,现在需要走六个(注意上下楼的时候只是上下楼,不斜着走),依次定义即可。
int dx[6]={0,0,1,-1,0,0};
int dy[6]={1,-1,0,0,0,0};
int dz[6]={0,0,0,0,1,-1};
确定起点终点,确定移动方法之后就可以用队列进行移动了,就是起点进队,然后队列不为空就循环,之后取出点进行移动,如果符合要求(边界不超出+没有遇到#+没有走到过)那么路径长度+1,设置这里到达过,然后进入队列执行下一个。
p.push({sx,sy,sz});
vis[sz][sx][sy]=true;
dis[sz][sx][sy]=0;
while(!p.empty())
{
point now=p.front();
p.pop();
for(int j=0;j<6;j++)
{
int xx=now.x+dx[j];
int yy=now.y+dy[j];
int zz=now.z+dz[j];
if(xx>=0&&xx<r&&yy>=0&&yy<c&&zz>=0&&zz<l&&a[zz][xx][yy]!='#'&&vis[zz][xx][yy]==false)
{
dis[zz][xx][yy]=dis[now.z][now.x][now.y]+1;
vis[zz][xx][yy]=true;
p.push({xx,yy,zz});
}
}
}
最后看终点是否有路径长度,没有就说明走不到那里,有的话就说明有长度,直接输出就可以了。
if(dis[tz][tx][ty]!=0)
{
cout<<"Escaped in "<<dis[tz][tx][ty]<<" minute(s)."<<endl;
}
else
{
cout<<"Trapped!"<<endl;
}
当然要注意这里面的输入是EOF为终止的输入,记得初始化+退出循环的条件。
if(l==0&&r==0&&c==0)
{
break;
}
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
代码如下:
#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
struct point
{
int x;
int y;
int z;
};
char a[30][30][30];
int dis[30][30][30];
bool vis[30][30][30];
int main()
{
int l,r,c;
while(cin>>l>>r>>c)
{
if(l==0&&r==0&&c==0)
{
break;
}
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
queue<point> p;
int dx[6]={0,0,1,-1,0,0};
int dy[6]={1,-1,0,0,0,0};
int dz[6]={0,0,0,0,1,-1};
int sx,sy,sz,tx,ty,tz;
for(int i=0;i<l;i++)
{
for(int j=0;j<r;j++)
{
for(int k=0;k<c;k++)
{
cin>>a[i][j][k];
}
}
}
for(int i=0;i<l;i++)
{
for(int j=0;j<r;j++)
{
for(int k=0;k<c;k++)
{
if(a[i][j][k]=='S')
{
sx=j;
sy=k;
sz=i;
}
else if(a[i][j][k]=='E')
{
tx=j;
ty=k;
tz=i;
}
}
}
}
p.push({sx,sy,sz});
vis[sz][sx][sy]=true;
dis[sz][sx][sy]=0;
while(!p.empty())
{
point now=p.front();
p.pop();
for(int j=0;j<6;j++)
{
int xx=now.x+dx[j];
int yy=now.y+dy[j];
int zz=now.z+dz[j];
if(xx>=0&&xx<r&&yy>=0&&yy<c&&zz>=0&&zz<l&&a[zz][xx][yy]!='#'&&vis[zz][xx][yy]==false)
{
dis[zz][xx][yy]=dis[now.z][now.x][now.y]+1;
vis[zz][xx][yy]=true;
p.push({xx,yy,zz});
}
}
}
if(dis[tz][tx][ty]!=0)
{
cout<<"Escaped in "<<dis[tz][tx][ty]<<" minute(s)."<<endl;
}
else
{
cout<<"Trapped!"<<endl;
}
}
}