题目描述:
瑞瑞最近迷上了字符串,因此决定出一个字符串的题。
给定两个正整数 N、K,考虑所有由 N - 2 个 a 和 2 个 b 组成的字符串,要求输出其中字典序第 K 小的。
例如当 N = 5 时,共有如下 10 种组成方式:
aaabb
aabab
aabba
abaab
ababa
abbaa
baaab
baaba
babaa
bbaaa
Input
多组数据,第一行给定 T,表示数据组数。(1 ≤ T ≤ 1e4)
对于每组数据,给出两个正整数 N、K。(3 ≤ N ≤ 1e5, 1 ≤ K ≤ min(2e9, N * (N-1) / 2 ))
N 的总和不会超过 1e5。
Output
对于每组数据,输出长度为 N 的字典序第 K 小的字符串。
Example
Input
7
5 1
5 2
5 8
5 10
3 1
3 2
20 100
Output
aaabb
aabab
baaba
bbaaa
abb
bab
aaaaabaaaaabaaaaaaaa
题目分析:
本题看上去非常的唬人,但是突然发现b的分布,如果我们从右往左看,最左边的b表示的是1-n的和中满足n*(n+1)/2<k的最小整数再+1,而最右边的b表示的是k-n*(n+1)/2的差。所以任务就变成了求n,聪明的我直接暴力相加,结果喜闻乐见的TLE。
好吧,数据太大了,直接扫描是不行的,那怎么办呢?我们就用O(1)复杂度的方法——直接算!没错,解一元二次方程来解决!这样求出n之后后面的都好求了,令n(n+1)/2=k,上取整就可以了。不过在程序设计里面需要考虑数据类型,比如这里都是长整形,所以初始化数据的时候也要用长整形,但是sqrt里面必须是double,所以要转换为long double,对于常数来说默认是int,我们要手动转换为long long。
count=ceil((-1.0L+sqrtl((long double)(1.0L+8.0L*k)))/2.0L);
sum=k-(count-1)*count/2;
count++;
解决这个问题之后,由于我们是倒着考虑的,所以我们也倒着输出,遇到了这两个就输出b,否则输出a。
for(long long i=(int)n;i>=1;i--)
{
if(i==count||i==sum)
{
cout<<"b";
}
else
{
cout<<"a";
}
}
cout<<endl;
代码如下:
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
long long n,k;
cin>>n>>k;
long long sum=0;
long long count=0;
count=ceil((-1.0L+sqrtl((long double)(1.0L+8.0L*k)))/2.0L);
sum=k-(count-1)*count/2;
count++;
for(long long i=(int)n;i>=1;i--)
{
if(i==count||i==sum)
{
cout<<"b";
}
else
{
cout<<"a";
}
}
cout<<endl;
}
}