局部极小

神经网络在作为一种搜索策略的时候,受搜索算法的控制,当解空间函数存在局部最小值时,如果搜索步长较小(动量较小),那么有可能在这个局部求解时求得的所有解都指向了极小值的方法,就是陷入的局部最小。
以BP为例,他是按照误差下降的最大梯度方向搜索,就好像地下有个坑,他是按照坡度最大方向找最低点,搜索步长就是迈的步长,走一步后找最大坡度方向迈下一步,如够一步不能迈出这个坑,那么你就永远在这个坑内转悠了。而其他地面可能存在的更低的点就找不到了。
这是BP网络的缺陷问题,BP学习算法用梯度下降法调整网络的权值,对于凸状的误差函数来说,它有唯一最小值。但是对实际问题中经常遇到的非凸状误差函数却不能取得最佳的结果,甚至在网络训练后不知道误差函数是否取得全局最小。 推荐书《神经网络理论与matlab7实现》
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值