生产中的机器学习 笔记
文章平均质量分 89
Little-Tortoise
回炉重造的计科研究生
展开
-
生产系统中的机器学习笔记(三):误差分析与性能审计
误差分析与性能审计 在机器学习系统的生命周期中,模型这一阶段被分为了两个部分,分别是上一节的选择、训练模型,与这一节的误差分析与性能审计。 选择、训练模型一节中,提出了以数据为中心的AI开发,强调对于构建一个将被应用于生产系统中的模型来说,我们不必在模型的算法实现上花费过多的精力,而更应关注数据的质量,使用高质量的数据来训练出适合具体应用环境的模型,并建立模型的评价基线。 误差分析与性能审计这一节则围绕对模型的评价展开。 错误分析 在上一节中讲到,模型训练完成后,即使取得了很低的平均训练误差,此时的模型也原创 2022-05-04 11:21:38 · 397 阅读 · 0 评论 -
生产系统中的机器学习笔记(二):选择、训练一个模型
这是我在学习DeepLearningAI上吴恩达老师的《生产系统中的机器学习》课程过程中的笔记。这一系列课程的质量很高,学习中受益匪浅。老师的讲授顺序是从模型部署至模型训练再到数据处理,模型部署部分的笔记忘记保存了,明天再整理,这一篇是模型中的选择和训练模型部分。 选择、训练一个模型 在模型选择与训练过程中,很多人往往会更倾向于不断优化模型的设计、参数的选择,这称为以模型为中心的人工智能开发(Model-centric AI development)。 但是事实上,经过这些年机器学习或者说深度学习的高速发原创 2022-05-01 12:27:13 · 1151 阅读 · 0 评论