机器学习
文章平均质量分 77
gakki的二向箔
学生,Master of science, 电子与计算机工程
展开
-
池化 polling
概念假如输入是一个局部归一化后的32×32小图像块,第一个卷积层有8个卷积核,卷积核大小为3×3,卷积时的滑动步长为1,得到8个大小为30×30的特征图。然后是利用这些特征去做分类。理论上讲,我们可以用所有提取得到的特征去训练分类器,例如 softmax 分类器,但这样做计算量就太大了。图像具有一种“静态性”的属性,在一个图像区域有用的特征极有可能在另一个区域同样适用。因此,为了描述大的图像,一个...原创 2018-03-15 11:29:08 · 986 阅读 · 0 评论 -
Siamese network
看关于图像质量评价的论文"Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment" 时,文章对于Siamese network 并没有足够的讲解,于是自己查资料多了解一下。 Siamese 网络由两个相同的神经网络结构组成,适用于处理两个输入比较类似的情况。它不是去将输入分类,而...原创 2018-03-24 11:33:16 · 1093 阅读 · 1 评论 -
神经网络中的梯度下降与优化算法
梯度下降 用来寻找极小值。通过向负梯度方向逼近。 用于在神经网络模型中进行权重更新,即在一个方向上更新和调整模型的参数,来最小化损失函数。 反向传播 先在前向传播中计算输入信号的乘积及其对应的权重,然后将非线性激活函数作用于这些乘积的总和。 然后,在网络的反向传播过程中回传相关误差,使用梯度下降更新权重值,通过计算误差函数E相对于权重参数W的梯度,在损失函数梯...原创 2018-03-24 17:20:03 · 1151 阅读 · 0 评论 -
正则化及dropout
综合Stanford university cs231n 课堂、及google 机器学习简介课程,进行了小小的记录~正则化 regularization有助于防止出现过拟合分为:L1 正则化L2 正则化丢弃正则化早停法(这不是正式的正则化方法,但可以有效限制过拟合)dropout 丢弃在每一次前向传递时,每一层都是计算上一个激活函数的结果乘以权重矩阵,得到下一个激活函数前的结果。然后将这一层算出来...原创 2018-04-15 21:35:51 · 825 阅读 · 0 评论 -
神经网络的激活函数
根据学习Stanford university的cs231n课堂视频,我做了一下总结~sigmoid原来挺流行,与大脑神经元的运作很类似饱和神经元将使得梯度消失。输入一个绝对值很大的数,其梯度接近于0,通过链式法则后会让梯度流消失,就无法得到反馈是一个非零中心的函数。梯度更新的效率低使用了指数函数,计算代价不低tanh(x) 双曲正切函数零均值绝对值很大的输入会使梯度消失ReLU线性整流函数不会产...原创 2018-04-13 16:50:07 · 428 阅读 · 0 评论 -
机器学习中数据的划分
将数据集分为三个子集:训练集Training Set - 用于训练模型的子集。验证集Validation Set - 用于评估训练集的效果。测试集Test Set - 用于测试训练后模型的子集。使用训练集训练模型,使用验证集评估模型,使用测试集确认模型的效果Train model on Training Set, Evaluate model on Validation Set, Confirm ...转载 2018-05-09 19:49:17 · 635 阅读 · 0 评论 -
VGGNet
有着较深的网络,使用小卷积核。 输入图像的大小为224*224。 5组卷积,卷积核大小3*3。 每组卷积后进行最大池化。 之后是3个全连接层。 最后是1个softmax分类器。 VGGnet能够学习比较复杂的功能,而且有着较低的成本。...原创 2019-01-17 22:16:04 · 235 阅读 · 0 评论 -
梯度消失 梯度爆炸
解决方案: 预训练加微调 梯度剪切、正则 relu, leakrelu等激活函数 batchnorm 残差结构 LSTM原创 2019-04-04 00:08:22 · 211 阅读 · 0 评论