PyTorch笔记 - Weight Normalization 权重归一化

权重归一化(Weight Normalization,WN)是优化深度神经网络的技术,它加速训练并提升泛化能力。通过将权重向量分解为方向和大小,归一化方向并保持大小为可训练参数,降低路径依赖,改善初始化和正则化。WN在PyTorch中可通过nn.utils.weight_norm实现,适用于小批量和动态网络,且不增加模型复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/129708143

深度神经网络的权重归一化(Weight Normalization,简称WN)是一种优化技术,它可以加速训练过程并提高模型的泛化能力。权重归一化的基本思想是将每个神经元的权重向量分解为两个因子:方向和大小。然后,对方向进行归一化,使其具有单位范数,而大小则作为一个可训练的参数。这样做的好处是,它可以减少梯度下降中的路径依赖性,从而避免局部最优和鞍点。此外,权重归一化还可以改善网络的初始化和正则化,因为它可以降低权重矩阵的条件数,并且可以与批次归一化或dropout等技术结合使用。

权重归一化将连接权重向量w在其欧氏范数和其方向上解耦成了参数向量v和参数标量g,即w = g * v / ||v||,其中||v||表示v的欧氏范数。这样,原来对w的优化就转化为对g和v的优化,而g和v分别控制了w的长度和方向。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值