欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/129708143
深度神经网络的权重归一化(Weight Normalization,简称WN)是一种优化技术,它可以加速训练过程并提高模型的泛化能力。权重归一化的基本思想是将每个神经元的权重向量分解为两个因子:方向和大小。然后,对方向进行归一化,使其具有单位范数,而大小则作为一个可训练的参数。这样做的好处是,它可以减少梯度下降中的路径依赖性,从而避免局部最优和鞍点。此外,权重归一化还可以改善网络的初始化和正则化,因为它可以降低权重矩阵的条件数,并且可以与批次归一化或dropout等技术结合使用。
权重归一化将连接权重向量w在其欧氏范数和其方向上解耦成了参数向量v和参数标量g,即w = g * v / ||v||,其中||v||表示v的欧氏范数。这样,原来对w的优化就转化为对g和v的优化,而g和v分别控制了w的长度和方向。