Stable Diffusion - 真人照片的高清修复 (StableSR + GFPGAN) 最佳实践

GFPGAN是一种用于低质量、模糊或损坏人脸图像恢复的算法,它利用预训练的面部GAN的先验信息。该算法包括生成式面部先验(GFP)、通道分割空间特征变换层(CS-SFT),以及面部成分损失和身份保留损失,以提高图像的真实性和语义一致性。文章还介绍了两种图像放大方法:4x-UltraSharp和StableSR,并展示了GFPGAN如何用于修复脸部细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132032216

GFPGAN
GFPGAN (Generative Facial Prior GAN) 算法,用于实现真实世界的盲脸恢复的算法,利用预训练的面部 GAN(如 StyleGAN2 )中封装的丰富和多样的先验信息,来修复低质量、模糊、噪声或者损坏的人脸图像。GFPGAN 算法的主要贡献有以下几点:

  • 提出生成式面部先验(GFP),可以从预训练的面部 GAN 中提取高质量的面部特征,并通过空间特征变换层(SFT)将其融合到面部恢复过程中,从而提高了面部图像的真实性和保真度。
  • 设计通道分割空间特征变换层(CS-SFT),可以根据输入特征对GAN特征进行部分调制,从而在纹理的真实性和保真度之间达到一个良好的平衡。
  • 引入面部成分损失和身份保留损失,可以分别增强感知显著的面部成分(如眼睛、鼻子、嘴巴等)和保留面部的身份信息,从而提高了面部图像的视觉质量和语义一致性。

Paper: Towards Real-World Blind Face Restoration with Generative Facial Prior

有些模糊的真实图像,需要高清修复细节,同时,重点关注于人脸区域,保持人物属性不变。


1. 图像放大

图像放大4倍,扩充细节,可选 4x-UltraSharp 算法 (快速) 或 StableSR 算法 (高质量),参考 超分辨率插件 StableSR v2 (768x768) 配置与使用

1. Extra 4x-UltraSharp

SD Tab 选择 后期处理 (Extra), 放大算法使用 4x-UltraSharp ,图像放大 4倍,配置如下:

Extra

放大效果如下,重点观察脸部细节:

4x-UltraSharp

2. StableSR

StableSR算法的整体效果和细节,均优于4x-UltraSharp 算法,缺点是速度较慢。

使用 StableSR 放大算法脚本,同样放大 4 倍,启用 Tiled DiffusionTiled VAE,效果如下:

StableSR

整体的对比效果,如下:

Img


2. 脸部细节

修复完全身之后,再使用 后期处理 (Extra)GFPGAN 功能,修复脸部细节。

建议提前下载 GFPGAN 的 3 个模型,即 detection_Resnet50_Final.pthparsing_parsenet.pthGFPGANv1.4.pth

https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
# models/GFPGAN/detection_Resnet50_Final.pth

https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
# models/GFPGAN/parsing_parsenet.pth

https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth
# models/GFPGAN/GFPGANv1.4.pth

cd models/GFPGAN/

wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.1.0/detection_Resnet50_Final.pth
wget https://ghproxy.com/https://github.com/xinntao/facexlib/releases/download/v0.2.2/parsing_parsenet.pth
wget https://ghproxy.com/https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth

注意:GFPGAN 不会修改面部细节,只提供放大功能,而CodeFormer 则会修改面部细节。

GFPGAN 和 CodeFormer 的配置如下:

  • GFPGAN的可见程度设置为 1.0,更高权重。
  • CodeFormer可见程度设置为 0.2,权重设置为 0.8 (反向)

Config

Extra 4x-UltraSharpGFPGAN 脸部修复,效果如下:

Extra 4x-UltraSharp

Stable SRExtra 4x-UltraSharpGFPGAN 脸部修复,明显Stable SR 优于 Extra 4x-UltraSharp,效果如下:

Stable SR

最终修复效果,即 StableSR + GFPGAN

Img

参考:田曦薇的照片

### 回答1: 稳定扩散是一项帮助您生成真人照片的先进技术。无论您是想创建虚拟人物、设计游戏角色还是进行影视特效制作,稳定扩散都能满足您的需求。通过稳定扩散技术,您可以快速、准确地生成高质量的真人照片,节省时间和资源。 稳定扩散利用深度学习算法,通过分析大量真实照片的特征和数据,从而创造出栩栩如生的虚拟人像。它不仅能够生成具有逼真面部特征的照片,还能自动添加人工智能驱动的表情、姿势和情感,使生成的照片更加生动和引人入胜。 稳定扩散还提供多种个性化、定制化的功能选项,您可以根据您的需求调整照片的年龄、性别、肤色、发型等参数。这样,您可以轻松创建不同风格和特点的角色,满足您创意的多样化需求。 同时,稳定扩散还与云平台相结合,使您能够随时随地在线生成和编辑真人照片。这为团队协作、快速迭代和灵活的创作流程提供了便利。 总而言之,稳定扩散是一项功能强大、易于操作的技术,能够帮助您快速、准确地生成高质量的真人照片。无论您是从事游戏角色设计、动画制作还是其他创作领域,稳定扩散都是您不可或缺的助手。它将为您的创作带来无限可能,让您的作品更具真实感和吸引力。 ### 回答2: "stable diffusion生成真人照片",旨在通过稳定的扩散技术为用户提供高质量的真实人像照片。以下是关于stable diffusion生成真人照片的几个提示语: 1. 高度还原真实,stable diffusion帮您呈现最真实的美丽风采。 2. stable diffusion,为您创造极致真实的人像照片体验。 3. 专业算法保障,stable diffusion打造迷人无比的真人照片。 4. 别再因照片质量困扰,stable diffusion助您获得高质真人照片! 5. 无需拍摄实景,stable diffusion帮您轻松生成令人惊艳的真人照片。 6. stable diffusion,您的真人照片生成利器,让您轻松展现独特魅力。 7. 极致清晰度,stable diffusion让您真人照片更加逼真赏心悦目。 8. stable diffusion,让您的真人照片更具专业品质,犹如职业摄影师作品。 9. 魅力焕发,stable diffusion引领真人照片新潮流,尽显个人魅力。 10. stable diffusion,为您带来真人照片生成的全新境界,以你为中心,创造绝美大片。 ### 回答3: 稳定的扩散是一种前沿技术,能够以惊人的准确度生成逼真的真人照片。无论是面部特征、头发、眼睛还是肤色,稳定的扩散技术都能够完美还原,仿佛这些照片是由真实的摄影师拍摄所得。无需担心照片出现模糊、颜色不真实等问题,稳定的扩散技术能够保证每个细节都真实而清晰。使用稳定的扩散,您可以轻松地创建个人照片、社交媒体头像或展示产品等用途所需的人物照片。您只需提供人物照片的大致轮廓,稳定的扩散技术将为您生成一个性格鲜明、富于表情的合成图像。稳定扩散不仅能够帮助设计师和创作者提高工作效率,还能为游戏开发人员创造出更逼真的角色形象。无论是您需要一幅展示您产品的广告照片,还是需要一张栩栩如生的人脸照片来进行人脸识别等技术实验,稳定的扩散都能够满足您的需求。随着技术的进一步发展,稳定扩散将变得更加出色和准确,因此不论您是专业人士还是普通用户,都能够通过稳定扩散创造出与众不同的真人照片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值