AIGC - 视频生成模型的相关算法进展

本文探讨了视频生成技术的最新进展,包括内容质量、一致性、视频长度、清晰度和稳定性等方面的突破,以及面临的复杂动作生成等挑战。当前技术大致处于L2到L3阶段,要达到L4还需解决可控性、逼真度和效率等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/135688206

视频生成技术确实是一个很有潜力的颠覆性技术领域,可以作为企业创新梯队的重点关注方向,最近发展很快,一直也有跟进这个方向的发展。

当前视频生成技术在哪些方面已突破,哪些方面还有卡点?,例如内容质量、一致性、视频长 度、清晰度、稳定性、复杂动作生成等。

视频生成技术,根据给定的文本、图像、视频等输入,自动生成符合描述的视频内容。视频生成技术在近年来取得了显著的进展,但也面临着一些挑战和限制。以下是一些视频生成技术的突破和卡点:

  • 内容质量:视频生成技术的一个重要目标是提高生成视频的内容质量,使其更逼真、清晰和细致。目前,Phenaki,MagicVideo等。这些技术主要利用了扩散模型(Diffusion model)的优势,通过逆向降噪推断来生成图像,同时利用Tr
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ManonLegrand

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值