选择排序算法也是可以优化的,既然每轮遍历时找出了最小值,何不把最大值也顺便找出来呢?这就是二元选择排序的思想。
使用二元选择排序,每轮选择时记录最小值和最大值,可以把数组需要遍历的范围缩小一倍。
public static void selectionSort2(int[] arr) {
int minIndex, maxIndex;
// i 只需要遍历一半
for (int i = 0; i < arr.length / 2; i++) {
minIndex = i;
maxIndex = i;
for (int j = i + 1; j < arr.length - i; j++) {
if (arr[minIndex] > arr[j]) {
// 记录最小值的下标
minIndex = j;
}
if (arr[maxIndex] < arr[j]) {
// 记录最大值的下标
maxIndex = j;
}
}
// 如果 minIndex 和 maxIndex 都相等,那么他们必定都等于 i,且后面的所有数字都与 arr[i] 相等,此时已经排序完成
if (minIndex == maxIndex) break;
// 将最小元素交换至首位
int temp = arr[i];
arr[i] = arr[minIndex];
arr[minIndex] = temp;
// 如果最大值的下标刚好是 i,由于 arr[i] 和 arr[minIndex] 已经交换了,所以这里要更新 maxIndex 的值。
if (maxIndex == i) maxIndex = minIndex;
// 将最大元素交换至末尾
int lastIndex = arr.length - 1 - i;
temp = arr[lastIndex];
arr[lastIndex] = arr[maxIndex];
arr[maxIndex] = temp;
}
}
我们使用 minIndex 记录最小值的下标,maxIndex 记录最大值的下标。每次遍历后,将最小值交换到首位,最大值交换到末尾,就完成了排序。
由于每一轮遍历可以排好两个数字,所以最外层的遍历只需遍历一半即可。
二元选择排序中有一句很重要的代码,它位于交换最小值和交换最大值的代码中间: