软件架构(CS结构/BS结构)

1. C/S结构
Client / Server

C/S工作流程图:



在C/S结构的情况下,不同的服务需要安装不同的客户端软件,
比如QQ、迅雷、Foxmail这种情况下安装的软件会越来越多,同时也有许多弊端,
比如A出差,需要在B电脑上查收邮件,但是B电脑并未安装Foxmail等类似的客户端软件,
这样不得不先去下载Foxmail,非常不方便。

app的三种:
web app(网页应用) (B/S)
hybrid app(混合应用 -- 应用的壳子套着页面) (C/S)
native app(原生应用) (C/S)


2. B/S结构
B/S(即 Broswer / Server)解决了C/S所带来的不便, 将所有的服务都可以通过浏览器来完成(因为基本所有浏览器都安装了浏览器),
但B/S也有一些不利,比如操作稳定性、流畅度等方面相对较弱。


### 关于卷积操作的动态示意图 为了更好地理解和教授卷积神经网络(CNN)的工作机制,许多资源提供了动态示意图来展示卷积操作的过程。以下是相关内容: #### 1. **卷积操作的核心概念** 卷积操作是一种数学运算,在卷积神经网络中被用来提取图像或其他数据的空间特征[^3]。具体来说,卷积核(Kernel 或 Filter)会在输入数据上滑动,并与对应的区域进行逐元素乘法并求和的操作,从而生成一个新的矩阵称为 Feature Map。 #### 2. **动态示意图的作用** 动态示意图通常用于可视化这一过程,帮助学习者直观了解以下几个方面: - 如何应用卷积核到输入数据的不同位置。 - 不同大小、形状和内容的卷积核如何影响最终的结果。 - Pooling 层如何进一步减少空间尺寸以降低计算复杂度[^4]。 #### 3. **推荐的学习资源** 一些常见的在线工具和教程可以提供这种动态演示效果: - **CS231n Convolution Demo**: 斯坦福大学 CS231n 课程提供的交互式卷积操作动画展示了不同参数设置下的卷积行为[^5]。 - **ConvNetJS Playground**: 这是一个基于浏览器的模拟器,允许用户调整模型架构并观察每一步的变化。 下面给出一段 Python 实现简单的二维卷积操作代码供参考: ```python import numpy as np def convolve(input_matrix, kernel): input_height, input_width = input_matrix.shape kernel_size = kernel.shape[0] output_height = input_height - kernel_size + 1 output_width = input_width - kernel_size + 1 result = np.zeros((output_height, output_width)) for y in range(output_height): for x in range(output_width): submatrix = input_matrix[y:y+kernel_size, x:x+kernel_size] result[y,x] = np.sum(submatrix * kernel) return result input_data = np.array([[1,2,3], [4,5,6], [7,8,9]]) conv_filter = np.array([[0,-1,0],[-1,5,-1],[0,-1,0]]) feature_map = convolve(input_data, conv_filter) print(feature_map) ``` 此脚本定义了一个基本函数 `convolve` 来手动完成一次二维离散卷积处理[^1]。 --- ####
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值