一些你不知道的Markdwon语法
生成目录
[toc] + 回车
定位到本页特定位置的超链接
将这段代码复制粘贴到你的.md文件中去,你就知道怎么回事了。相信我一次,好吗?
# 标题
------
## 目录
1. [目录1](#jump1)
2. [目录2](#jump2)
------
### <span id="jump1">1. 目录1</span>
------
### <span id="jump
常用语法
字体
<font face="STCAIYUN">我是华文彩云</font>
我是华文彩云
<font face="黑体" color=green size=5>我是黑体,绿色,尺寸为5</font>
我是黑体,绿色,尺寸为5
数学符合&公式
希腊字母表
符号 | 代码 | 符合 | 代码 |
---|---|---|---|
α \alpha α | \alpha | A \Alpha A | \Alpha |
β \beta β | \beta | B \Beta B | \Beta |
γ \gamma γ | \gamma | Γ \Gamma Γ | \gamma |
δ \delta δ | \delta | Δ \Delta Δ | \delta |
ϵ \epsilon ϵ | \epsilon | E \Epsilon E | \epsilon |
ζ \zeta ζ | \zeta | Z \Zeta Z | \Zeta |
η \eta η | \eta | H \Eta H | \Eta |
θ \theta θ | \theta | Θ \Theta Θ | \Theta |
ι \iota ι | \iota | I \Iota I | \Iota |
λ \lambda λ | \lambda | Λ \Lambda Λ | \Lambda |
μ \mu μ | \mu | M \Mu M | \Mu |
ν \nu ν | \nu | N \Nu N | \Nu |
ο \omicron ο | \omicron | O \Omicron O | \Omicron |
ϕ \phi ϕ | \phi | Φ \Phi Φ | \Phi |
υ \upsilon υ | \upsilon | υ \upsilon υ | \upsilon |
σ \sigma σ | \sigma | Σ \Sigma Σ | \Sigma |
ρ \rho ρ | \rho | P \Rho P | \Rho |
π \pi π | \pi | Π \Pi Π | \Pi |
数学符号
描述 | 符号 | 代码 |
---|---|---|
行内公式 | $$ | $$ |
上标 | y = x 2 y=x^2 y=x2 | y = x^2 |
下标 | O 2 O_2 O2 | O_2 |
分式 | a b \frac {a}{b} ba | \frac {a}{b} |
根式 | b a \sqrt[a]b ab | \sqrt[a]b |
占位符 | \quad | \quad |
向量 | a ⃗ \vec{a} a | \vec{a} |
无穷,极限 | ∞ \infty ∞, lim \lim lim | \infty,\lim |
省略号 | x 1 2 + ⋯ + x n 2 x_1^2 + \cdots + x_n^2 x12+⋯+xn2 | x_1^2 + \cdots + x_n^2 |
矩阵
L_{n\times n} = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots &\ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\
\end{bmatrix}
L n × n = [ a 11 a 12 e w q a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] L_{n\times n} = \begin{bmatrix} a_{11} & a_{12} ewq & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} Ln×n= a11a21⋮an1a12ewqa22⋮an2a1n⋯⋱⋯a2n⋮ann
花括号
$c(u)=\begin{cases} \sqrt\frac{1}{N},u=0\\ \sqrt\frac{2}{N}, u\neq0\end{cases}$
c ( u ) = { 1 N , u = 0 2 N , u ≠ 0 c(u)=\begin{cases} \sqrt\frac{1}{N},u=0\\ \sqrt\frac{2}{N}, u\neq0\end{cases} c(u)=⎩ ⎨ ⎧N1,u=0N2,u=0
数学符号补充
⩾ \geqslant ⩾ | ⩽ \leqslant ⩽ |
---|---|
\leqslant | \leqslant |