一些你不知道的Markdwon语法

这篇文章揭示了一些不常见的Markdown语法,包括如何生成目录,创建页面内部链接,以及使用不同字体。此外,还详细介绍了在Markdown中编写数学公式,如希腊字母和各种数学符号的方法,对编程和技术写作非常有帮助。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一些你不知道的Markdwon语法

生成目录

 [toc] + 回车

定位到本页特定位置的超链接

将这段代码复制粘贴到你的.md文件中去,你就知道怎么回事了。相信我一次,好吗?

# 标题

------

## 目录

1. [目录1](#jump1)
2. [目录2](#jump2)

------

### <span id="jump1">1. 目录1</span>

------

### <span id="jump

常用语法

字体

<font face="STCAIYUN">我是华文彩云</font>

我是华文彩云

<font face="黑体" color=green size=5>我是黑体,绿色,尺寸为5</font>

我是黑体,绿色,尺寸为5

数学符合&公式

希腊字母表

符号代码符合代码
α \alpha α\alpha A \Alpha A\Alpha
β \beta β\beta B \Beta B\Beta
γ \gamma γ\gamma Γ \Gamma Γ\gamma
δ \delta δ\delta Δ \Delta Δ\delta
ϵ \epsilon ϵ\epsilon E \Epsilon E\epsilon
ζ \zeta ζ\zeta Z \Zeta Z\Zeta
η \eta η\eta H \Eta H\Eta
θ \theta θ\theta Θ \Theta Θ\Theta
ι \iota ι\iota I \Iota I\Iota
λ \lambda λ\lambda Λ \Lambda Λ\Lambda
μ \mu μ\mu M \Mu M\Mu
ν \nu ν\nu N \Nu N\Nu
ο \omicron ο\omicron O \Omicron O\Omicron
ϕ \phi ϕ\phi Φ \Phi Φ\Phi
υ \upsilon υ\upsilon υ \upsilon υ\upsilon
σ \sigma σ\sigma Σ \Sigma Σ\Sigma
ρ \rho ρ\rho P \Rho P\Rho
π \pi π\pi Π \Pi Π\Pi

数学符号

描述符号代码
行内公式$$$$
上标 y = x 2 y=x^2 y=x2y = x^2
下标 O 2 O_2 O2O_2
分式 a b \frac {a}{b} ba\frac {a}{b}
根式 b a \sqrt[a]b ab \sqrt[a]b
占位符 \quad \quad
向量 a ⃗ \vec{a} a \vec{a}
无穷,极限 ∞ \infty lim ⁡ \lim lim\infty,\lim
省略号 x 1 2 + ⋯ + x n 2 x_1^2 + \cdots + x_n^2 x12++xn2x_1^2 + \cdots + x_n^2

矩阵

L_{n\times n} = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\ 
a_{21} & a_{22} & \cdots & a_{2n} \\ 
\vdots & \vdots &\ddots & \vdots\\
a_{n1} & a_{n2} & \cdots & a_{nn} \\ 
\end{bmatrix}

L n × n = [ a 11 a 12 e w q a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a n 1 a n 2 ⋯ a n n ] L_{n\times n} = \begin{bmatrix} a_{11} & a_{12} ewq & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots &\ddots & \vdots\\ a_{n1} & a_{n2} & \cdots & a_{nn} \\ \end{bmatrix} Ln×n= a11a21an1a12ewqa22an2a1na2nann

花括号

$c(u)=\begin{cases} \sqrt\frac{1}{N},u=0\\ \sqrt\frac{2}{N}, u\neq0\end{cases}$

c ( u ) = { 1 N , u = 0 2 N , u ≠ 0 c(u)=\begin{cases} \sqrt\frac{1}{N},u=0\\ \sqrt\frac{2}{N}, u\neq0\end{cases} c(u)= N1 u=0N2 u=0

数学符号补充

⩾ \geqslant ⩽ \leqslant
\leqslant\leqslant
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值