隐私计算学习笔记

目录

安全保护技术和应用总结

基础隐私计算技术在联邦学习中的应用

参考书籍


图片来源: https://www.basebit.ai/en/Statics/Images/en/dbys.png

隐私计算技术的产生是互联网、大数据以及区块链等技术发展到一定阶段的必然成果,以下为大家分享读书笔记。

安全保护技术和应用总结

技术名称解决的问题开源框架名称所用语言开源链接
混淆电路百万富翁问题Obliv-CC59.0%OCaml32.9%https://github.com/samee/obliv-c
秘密共享求向量内积JIFFJavaScripthttps://github.com/multiparty/jiff
同态加密距离计算SEALC++https://github.com/microsoft/SEAL
零知识证明提供财富达标证明libsnarkC++https://github.com/sciprlab/libsnark
差分隐私技术统计美国人口数据SmartNoisePython and Rusthttps://github.com/opendp/smartnoise-sdk
可信执行环境Trusted Execution Environment椭圆曲线数字签名算法基于硬件的TEE:Intel SGXC andor C++https://software.intel.com/sgxsdk
可信执行环境Trusted Execution EnvironmentPrivate Join and ComputeTeaclavePython and Rusthttps://github.com/apache/incubator-teaclave

基础隐私计算技术在联邦学习中的应用

技术名称解决的问题说明
隐私保护技术样本对齐
同态加密特征工程机器学习建模中的重要一环
秘密共享梯度下降和神经网络训练分别为横向和纵向联邦学习
差分隐私对梯度信息添加随机噪声以保护用户梯度的私密性平衡隐私保护预算开销和联邦学习效率具有挑战性
TEE解决信息聚合问题

参考书籍

  • 李伟荣. 深入浅出隐私计算 技术解析与应用实践 (网络空间安全技术丛书) (Chinese Edition). Kindle Edition.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值