关于拼凑面额的动态规划算法

题目描述:
给你六种面额1、5、10、20、50、100元的纸币,假设每种币值的数量都足够多,编写程序求组成N员(N为0-10000的非负整数)的不同组合的个数。
输入描述:
输入为一个数字N,即需要拼凑的面额
输出描述:
输出也是一个数字,为组成N的组合个数。
示例1
输入
5
输出

2

解题思路:

这个题的思路是动态规划的算法思路,如果用二维的则会超时,采用一维的则首先对币种遍历,每遍历一个币种coins[i],然后再对1,N(需要拼凑的钱数)进行依次遍历,其实就转化为N-coins[i]的问题了,这样就可以计算总的方案数。该动态规划的状态转移方程:dp[j]=dp[j]+dp[j-coins[i]](前提条件是j-coins[i]>=0)

代码实现:

#-*-coding:utf-8 -*-
while True:
    try:
        N=int(raw_input())
        coins=[1,5,10,20,50,100]
        h=len(coins)
        dp=[0 for i in range(10001)]
        dp[0]=1
        for i in range(h):
            for j in range(1,N+1):
                if j>=coins[i]:
                    dp[j]+=dp[j-coins[i]]
        print dp[N]
    except:
        break


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值