题目描述:
给你六种面额1、5、10、20、50、100元的纸币,假设每种币值的数量都足够多,编写程序求组成N员(N为0-10000的非负整数)的不同组合的个数。
输入描述:
输入为一个数字N,即需要拼凑的面额
输出描述:
输出也是一个数字,为组成N的组合个数。
示例1
输入
5
输出
给你六种面额1、5、10、20、50、100元的纸币,假设每种币值的数量都足够多,编写程序求组成N员(N为0-10000的非负整数)的不同组合的个数。
输入描述:
输入为一个数字N,即需要拼凑的面额
输出描述:
输出也是一个数字,为组成N的组合个数。
示例1
输入
5
输出
2
解题思路:
这个题的思路是动态规划的算法思路,如果用二维的则会超时,采用一维的则首先对币种遍历,每遍历一个币种coins[i],然后再对1,N(需要拼凑的钱数)进行依次遍历,其实就转化为N-coins[i]的问题了,这样就可以计算总的方案数。该动态规划的状态转移方程:dp[j]=dp[j]+dp[j-coins[i]](前提条件是j-coins[i]>=0)
代码实现:
#-*-coding:utf-8 -*-
while True:
try:
N=int(raw_input())
coins=[1,5,10,20,50,100]
h=len(coins)
dp=[0 for i in range(10001)]
dp[0]=1
for i in range(h):
for j in range(1,N+1):
if j>=coins[i]:
dp[j]+=dp[j-coins[i]]
print dp[N]
except:
break