快速幂与快速矩阵幂(以大数下的斐波那契数列为例)

一般地,a^n的算法时间复杂度为o(n),但是如果n为大数,则运行时间过长,效率不高。因此,使用二分的思想降低时间复杂度,使其降至o(logn),则会使运行效率较大提升。二分思想如下图所示。

例如:2^8=2^4*2^4=(2^2*2^2)*(2^2*2^2)=((2*2)*(2*2))*((2*2)*(2*2)),只需计算4次,比原来的8次降低许多(这里多一次,是把第一次乘1也算上)

  奇数次:2^9=2*(2^4)*(2^4)=2*(2^2*2^2)*(2^2*2^2)=2*((2*2)*(2*2))*((2*2)*(2*2)) 

因此,快速幂的代码实现如下:

def quick(a,n,p):
    res=1
    ans=a
    while n>=2:
        if n&1:
            res=(ans*res)%p
        ans=(ans*ans)%p
        n=n>>1
    ans=res*ans
    return ans%p
if __name__ == '__main__':
    a,n,p=map(int,raw_input().split())
    print quick(a,n,p)

借鉴快速幂的思想,求快速矩阵幂。

根据矩阵乘法的结合律AB.....B=A(B)^n,而B^n则可以用快速幂的方法求,就可以降低计算时间。

矩阵的快速幂是用来高效地计算矩阵的高次方的。将朴素的o(n)的时间复杂度,降到log(n)。这里先对原理(主要运用了矩阵乘法的结合律)做下简单形象的介绍:一般一个矩阵的n次方,我们会通过连乘n-1次来得到它的n次幂。但做下简单的改进就能减少连乘的次数,方法如下:把n个矩阵进行两两分组,比如:A*A*A*A*A*A  =>  (A*A)*(A*A)*(A*A)这样变的好处是,你只需要计算一次A*A,然后将结果(A*A)连乘自己两次就能得到A^6,即(A*A)^3=A^6。算一下发现这次一共乘了3次,少于原来的5次。其实大家还可以取A^3作为一个基本单位。原理都一样:利用矩阵乘法的结合律,来减少重复计算的次数。以上都是取一个具体的数来作为最小单位的长度,这样做虽然能够改进效率,但缺陷也是很明显的,取个极限的例子(可能有点不恰当,但基本能说明问题),当n无穷大的时候,你现在所取的长度其实和1没什么区别。所以就需要我们找到一种与n增长速度”相适应“的”单位长度“,那这个长度到底怎么去取呢???这点是我们要思考的问题。有了以上的知识,我们现在再来看看,到底怎么迅速地求得矩阵的N次幂。既然要减少重复计算,那么就要充分利用现有的计算结果咯!~怎么充分利用计算结果呢???这里考虑二分的思想。。
回头看看矩阵的快速幂问题,我们是不是也能把它离散化呢?比如A^19  =>  (A^16)*(A^2)*(A^1),显然采取这样的方式计算时因子数将是log(n)级别的(原来的因子数是n),不仅这样,因子间也是存在某种联系的,比如A^4能通过(A^2)*(A^2)得到,A^8又能通过(A^4)*(A^4)得到,这点也充分利用了现有的结果作为有利条件。下面举个例子进行说明:

斐波那契数列的递推: f(n) = f(n-1) + f(n-2);其对应的矩阵就是      f(n)   f(n-1)    f(n-1)   f(n-2)     1    1          即形如C=A*B
                                                                                                                      0      0   =        0       0    *   1    0    
可以发现,左面是个常数矩阵,而右面的列向量中每一项就是递推公式中的依赖项。然后根据初始两f(1)=1,f(0)=0,则将初始值代入A中,求C=A*(B^(n-2))。

问题描述:

现在有一栋高楼,但是电梯却出了故障,无奈的你只能走楼梯上楼,根据你的腿长,你一次能走1级或2级楼梯,已知你要走n级楼梯才能走到你的目的楼层,请计算你走到目的楼层的方案数,由于楼很高,所以n的范围为int范围内的正整数。
给定楼梯总数n,请返回方案数。为了防止溢出,请返回结果Mod 1000000007的值。
测试样例:
      3
返回:3

代码实现:

#-*- coding:utf-8 -*-
class GoUpstairs:
    def countWays(self, n):
        n=n-1
        res=base=[[1,1],[1,0]]
        surplus=[[1,1],[0,0]]
        while(n>=2):
            if n&1:
                surplus=self.mutiply(surplus,res)
            res=self.mutiply(res,res)
            n=n>>1
        res=self.mutiply(surplus, res)
        return res[0][0]%1000000007
    def mutiply(self,a,b):
        temp=[[0,0],[0,0]]
        for i in range(len(a)):
            for j in range(len(b)):
                for k in range(len(temp)):
                    temp[i][j]+=a[i][k]*b[k][j]%1000000007
                      
        return temp

ps:遇到变形的递推公式,也可以用矩阵快速幂,只需找对相应的矩阵关系即可




  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值