整数开方算法

申明,本文非笔者原创,原文转载自:http://www.2cto.com/kf/201309/245080.html


前言

楼主参加2014年创新工厂笔试,几道算法题目,堆排序和杨氏矩阵这种题目就不说了,有一个求整数开方的算法,当时难住了大部分同学,我用的是移位方法,后来想了一下,其实给定了精度,应该用二分逼近算法
 
题目
求整数N的开方,精度在0.001
 
思路
这里给出多种实现方案,读者自取
 
二分法
若N大于1,则从[1, N]开始,low = 1, high = N, mid = low + (high - low) >> 1开始进行数值逼近
 
若N小于1,则从[N, 1]开始,low = 0, high = N, mid = low + (high - low) >> 1开始进行数值逼近
 
ac代码
?
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
/**
  * 创新工厂2014年校招算法题目,求整数N的开方,精度为0.001
  */ 
   
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
   
#define ACCURACY 0.001 
   
double newSqrt( double n) 
     double low, high, mid, tmp; 
   
     // 获取上下界 
     if (n > 1)   { 
         low = 1; 
         high = n; 
     } else
         low = n; 
         high = 1; 
    
   
     // 二分法求开方 
     while (low <= high) { 
         mid = (low + high) / 2.000; 
   
         tmp = mid * mid; 
   
         if (tmp - n <= ACCURACY && tmp -n >= ACCURACY * -1) { 
             return mid; 
         } else if (tmp > n) { 
             high = mid; 
         } else
             low = mid; 
        
    
   
     return -1.000; 
   
int main( void
     double n, res; 
   
     while ( scanf ( "%lf" , &n) != EOF) { 
         res = newSqrt(n); 
         printf ( "%lf\n" , res); 
    
   
     return 0; 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值