Coursera - Algorithm (Princeton) - 课程笔记 - Week 7

Week 7

无向图 Undirected Graphs

图 Graphs

  • 图:一组由边成对连接的点
  • 路径:由边连接的点的序列
  • 环路:首末点相同的路径
  • 连通:如果两个点之间存在一条路径,则两个点是连通的
  • 连通分量:图的一个子集,其中的任一对点都是联通的
  • 图处理问题:
    • 路径:在点st之间是否存在一条路径
    • 最短路径:在点st之间是否存在一条最短路径
    • 环路:途中是否存在环路
    • 欧拉遍历:是否存在一个环路,用到每条边一次
    • 汉密尔顿遍历:是否存在一个环路,用到每个顶点一次
    • 连通性:有没有链接所有点的方式
    • 最小生成树(MST):链接所有点的最佳方式
    • 双连通性(Biconnectivity):是否有一个顶点其移除将解除图的链接
    • 平面性(Planarity):图上无交叉边
    • 图同形:两组可以代表同一个图的邻接表

图的API Graph API

  • 图的绘制:提供图结构的基本引导,但是这种引导可能发生误导

  • 顶点(Vertex)表示:以顶点为核心表示图,边视为点的邻接关系

    • 使用 0 0 0 V − 1 V-1 V1的整数(V为顶点个数)
    • 思路:表示图的过程中使用整数数组
    • 使用标记表将名称(各个顶点的名称)转换为整数
    • 异常:自循环(同一点上的环边),平行边(两点间的多条边)
  • 基本API

    public class Graph
    {
        Graph(int V); // create an empty graph with V vertices
        Graph(In in); // create a graph from input stream
        void addEdge(int v, int w); // add an edge v-w
        Iterable<Integer> adj(int v); // vertices adjacent to v
        int V(); // number of vertices
        int E(); // number of edges
        String toString(); // string representation
    }
    
  • 一些使用上述API的一些典型图处理代码

    // compute the degree of v
    public static int degree(Graph G, int v)
    {
        int degree = 0;
        for (int w : G.adj(v)) degree++;
        return degree;
    }
    
    // compute maximum degree
    public static int maxDegree(Graph G)
    {
        int max = 0;
        for (int v = 0; v < G.V(); v++)
        if (degree(G, v) > max)
        max = degree(G, v);
        return max;
    }
    
    // compute average degree
    public static double averageDegree(Graph G)
    { return 2.0 * G.E() / G.V(); }
    
    // count self-loops
    public static int numberOfSelfLoops(Graph G)
    {
        int count = 0;
        for (int v = 0; v < G.V(); v++)
        for (int w : G.adj(v))
        if (v == w) count++;
        return count/2; // each edge counted twice
    }
    
  • 边集合(Set-of-edges)表示:维护一个边(一条边即两个端点)的列表,低效

  • 邻接矩阵(Adjacency-matrix)表示:维护一个 V × V V \times V V×V的布尔数列(矩阵),对存在邻接关系的点ij,有a[i][j] = a[j][i] = true,同样很低效

  • 邻接列表(Adjacency-list)表示:维护一个以顶点编号为索引的数组,每一项保存了与之邻接的点的列表(一个包),遍历的时间和空间占用均正比于顶点个数,可用于大型图表示

    • 代码表示为
    public class Graph
    {
        private final int V;
        private Bag<Integer>[] adj;
        
        public Graph(int V)
        {
            this.V = V;
            adj = (Bag<Integer>[]) new Bag[V];
            for (int v = 0; v < V; v++)
            adj[v] = new Bag<Integer>();
        }
        
        public void addEdge(int v, int w)
        {
            adj[v].add(w);
            adj[w].add(v);
        }
        
        public Iterable<Integer> adj(int v)
        { return adj[v]; }
    }
    
  • 实际中,使用邻接列表表示

    • 因为算法都是基于对与特定点V邻接的顶点的遍历
    • 同时现实中的图都是稀疏的(点很多但是平均度数很小,这种表示使时间线性于边个数)
表示方法空间占用添加新边确认v和w之间有边遍历与v邻接的顶点
边集合 E E E 1 1 1 E E E E E E
邻接矩阵 V 2 V^2 V2 1 1 1 1 1 1 V V V
邻接列表 E + V E+V E+V 1 1 1 d e g r e e ( v ) degree(v) degree(v) d e g r e e ( v ) degree(v) degree(v)

深度优先搜索 Depth-First Search

  • 迷宫探索问题

    • 顶点:通道的交点
    • 边:通道
    • 目标:探索迷宫中的每一个交点
  • Tremaux(特莱谋)迷宫探索

    • 边走便用一根线标记路程
    • 标记每一个走过的交点和通道
    • 当(交点处)没有其他没有走多的选择时,回溯步骤
    • 确保同一位置只走一次
  • 深度优先搜索

    • 目标:系统地搜索一张图
    • 基本思路:仿照迷宫的探索
    • 算法:深度优先遍历一个点v
      • 将v标记为遍历过
      • 递归地遍历与v相邻接为标记点w
    • 典型应用:
      • 给定一个源点,找到所有与之连接的顶点
      • 找到两个点之间的路径
    • 数据结构
      • 使用一个布尔数组标记已遍历过的顶点
      • 使用一个整数数组保存路径信息(与之相连的点)
  • 图处理方法的设计模式:将图数据类型从图处理中解耦

    • 创建一个图(Graph)实例
    • 将这个Graph实例送入到图处理流程中
    • 查询这个流程的信息
    • 举例:path API
    public class Paths
    {
        Paths(Graph G, int s)// find paths in G from source s
        boolean hasPathTo(int v)// is there a path from s to v?
        Iterable<Integer> pathTo(int v)// path from s to v; null if no such path
    }
    
  • DFS代码实现

public class DepthFirstPaths
{
    private boolean[] marked; // 是否连接到指定点
    private int[] edgeTo; // 邻接的上一个点
    private int s;
    
    public DepthFirstPaths(Graph G, int s)
    {
        ... // 初始化
        dfs(G, s); // 递归遍历
    }
    
    private void dfs(Graph G, int v)
    {
        marked[v] = true; // 遍历完啦
        for (int w : G.adj(v))
            // 遍历所有邻接点
            if (!marked[w])
            {
                // 所有没有遍历过的点,递归遍历
                dfs(G, w);
                edgeTo[w] = v; // 因为需要找到最开始到达该点的父结点,因此需要在递归完再标记
            }
    }
}
  • 性质:
    • DFS将所有与s连接的点标记上的时间正比于其度之和
    • 在完成DFS后,可以在常数时间找到与s相连接的点,并在线性于路径长度的时间内找到一条到s的路径

广度优先搜索 Breadth-Frist Search

  • 广度优先搜索思路,重复下述步骤直到队列维空

    • 从队列中移出一个顶点v
    • 将与v邻接的所有未标记点标记并加入队列
  • 与DFS不同,非递归算法(实际使一个栈),使用一个循环从队列中取出点

  • 最短路:从s到t使用最少数量边的路径,BFS可实现

  • 性质

    • BFS计算从s到其他节点的最短路的时间正比于 E + V E+V E+V
  • 实现

    public class BreadthFirstPaths
    {
        private boolean[] marked;
        private int[] edgeTo;private void bfs(Graph G, int s)
        {
            Queue<Integer> q = new Queue<Integer>();
            q.enqueue(s);
            marked[s] = true;
            while (!q.isEmpty())
            {
                int v = q.dequeue();
                for (int w : G.adj(v))
                {
                	if (!marked[w])
                    {
                        q.enqueue(w);
                        marked[w] = true;
                        edgeTo[w] = v;
                    }
                }
            }
        }
    }
    

连通分量 Connected Components

  • 连通性查询
    • 定义:如果顶v和w之间存在一条路径,则这两个点是连通的
    • 目标:对图进行预处理以在常数时间内回答v与w连通的查询
  • 根据目标,如果使用邻接矩阵表示图,那么可以轻松实现,但是实际中我们不能使用邻接矩阵表示图
  • API
public class CC
{
    CC(Graph G); // find connected components in G
    boolean connected(int v, int w); // are v and w connected?
    int count(); // number of connected components
    int id(int v); // component identifier for v
}
  • 解决方法

    • 并查集?找到相连的部分
      • 不好,因为达不到常数时间
      • 也算好,因为同时做到了并(count)和查(id)
    • DFS?是的,保存下来然后查找
  • “相连通”是一个等价关系

    • 自反性:v与v连通
    • 对称性:v与w连通,那么w与v连通
    • 传递性:如果v与w连通,w与x连通,那么v与x连通
    • 定理:一个连通分量是相连通的节点的最大集
    • 思考:在给定连通分量的前提下,可以实现连通性问询的常数时间回答
  • 构造连通分量

    • 目标:将顶点划分为连通分量
    • 算法:
      • 将所有顶点v初始化为未标记
      • 对于每一个未标记的点v,使用DFS找出与其在同一连通分量的顶点
        • 将当前v标记
        • 递归地遍历与v邻接的未标记顶点
    • 代码实现
    public class CC
    {
        private boolean[] marked;
        private int[] id; // id of component containing v
        private int count;
        
        public CC(Graph G)
        {
            marked = new boolean[G.V()];
            id = new int[G.V()];
            // 创建实例时直接找出所有的连通分量
            for (int v = 0; v < G.V(); v++)
            {
                if (!marked[v])
                {
                    dfs(G, v);
                    count++;
                }
            }
        }
        
        public int count()
        { return count; }
        
        public int id(int v)
        { return id[v]; }
        
        // 同一个dfs函数调用下的顶点在一个
        private void dfs(Graph G, int v)
        {
            marked[v] = true;
            id[v] = count;
            for (int w : G.adj(v))
                if (!marked[w])
                	dfs(G, w);
        }
    }
    

图上的挑战问题 Graph Challenges

  • 尝试回答:一个图处理能有多难

    • 0级:任何程序员都能做
    • 1级:一般的优秀的算法学生可以做
    • 2级:需要雇佣一个专家
    • 3级:棘手的(Intractable)
    • 4级:没人知道
    • 5级:不可能
  • 双边性(Bipartite):将一个图中的顶点分为两个子集,其中任一边均连接着两个子集的顶点

    • 1级:一些简单的DFS方法可以解决
  • 环路:

    • 1级:一些简单的DFS方法可以解决
  • 欧拉遍历(七桥问题):是否存在一个环路能够经过每条边一次且仅一次

    • 如果所有的点的度数都是偶数,那么可以实现(Eulerian)
    • 1级:欧拉遍历问题,经典图处理问题,有一定的挑战性
  • 汉密尔顿遍历(旅行商问题):是否存在一个环路能够经过每一个点一次且仅一次

    • 3级:经典NP问题
  • 同形:除了顶点命名不同外,两个图是一样的

    • 4级:目前基本无法解决(根本不知道这个问题是否有解)
  • 平面图:在没有交叉便的情况下铺平一张图

    • 2级:目前有一个线性DFS算法

有向图 Directed Graphs

有向图 Digraphs

  • 有向图:被有方向的边成对连接的点的集合
  • 由于边是有向的,因此描述边的顶点顺序就变得很重要了(有向路径,有向环路)
  • 边的度扩展为入度和出度
    • 出度,从该顶点离开的边的个数
    • 入读,来到该顶点的边的个数
  • 一些有向图问题
    • 路径:是否存在由s到t的有向路径
    • 最短路径:由s到t的最短有向路径
    • 拓扑排序:存在一张有向图,所有的边都向一个方向指(在有流程限制的时间安排问题中有很多应用)
    • 强连通性:是否有一个有向图,其所有的顶点对均存在一条有向边(需要双向才满足)
    • 传递闭包:对v和w是否存在一条路径(v和w位于其中且方向明确)
    • PageRank:一个网页的重要性(网页之间的链接是有向图)

有向图的API Digraph API

  • 和无向图基本相同
  • 仍然保持了无向图API的设计模式:创建图的类作为图处理算法的客户
  • API如下
public class Digraph
{
    Digraph(int V); // create an empty digraph with V vertices
    Digraph(In in); // create a digraph from input stream
    void addEdge(int v, int w); // add a directed edge v→w
    Iterable<Integer> adj(int v); // vertices pointing from v
    int V(); // number of vertices
    int E(); // number of edges
    Digraph reverse(); // reverse of this digraph
    String toString(); // string representation
}
  • 有向图的实现:邻接列表,对应索引存储的是从该点发出的边的邻接情况
  • 对于基本实现,有向图和无向图基本没有区别,只是在添加边时只添加给定方向的边
表示方法空间占用添加新边确认由v到w有边遍历从v发出的边
边集合 E E E 1 1 1 E E E E E E
邻接矩阵 V 2 V^2 V2 1 1 1 1 1 1 V V V
邻接列表 E + V E+V E+V 1 1 1 o u t d e g r e e ( v ) outdegree(v) outdegree(v) o u t d e g r e e ( v ) outdegree(v) outdegree(v)
  • 遍历到达v的边,时间复杂度为 E + V E+V E+V

有向图搜索 Digraph Search

  • 可达性:在一张有向图上找到所有由s可达的顶点
  • 方法:和无向图一样使用DFS
    • 每一张无向图都是一张有向图(一条无向边相当于方向相反的两条有向边)
    • DFS是一个有向图算法
    • 代码实现完全相同
  • 可达性应用:程序控制流分析
    • 顶点:指令块(顺序指令集合)
    • 边:程序跳转
    • 死代码销毁:寻找不可达的代码
    • 死循环检测:查看推出指令是否不可达
  • 可达性应用:mark-sweep垃圾收集器
    • 顶点:对象实例
    • 边:引用
    • 根:可以被程序直接访问的对象(不需要引用的那种)
    • 可达对象:从根出发的非直接可访问对象
    • mark-sweep算法:
      • 标记所有可达对象
      • 如果对象没有被标记,那么就是垃圾
      • 空间占用:每一个对象一个标记位(还有DFS需要的栈)
  • DFS能够解决很多有向图的问题
  • BFS同样也是一个有向图算法,其实现和无向图的BFS是一样的
    • 在有向图中,BFS计算最短路径的时间仍正比于 E + V E+V E+V
  • 多源最短路:给定一张有向图和一组源点,找出其中任一点到其他任何点的最短路
    • 使用BFS,但是初始化时将所有源点都入队
  • BFS应用:网络爬虫
    • 以根网页作为源点s
    • 维护要探索的网站队列
    • 维护已发现的网站集合
    • 出队下一个网站,将其链接的网站入队

拓扑排序 Topological Sort

  • 流程调度:给定一组需要完成的但是存在流程顺序限制的任务,应当如何安排调度这些任务呢

    • 顶点:各个任务
    • 边:流程限制
  • 拓扑排序:工作于有向无环图中(Directed Acyclic Graph,DAG)

    • 实质就是想办法让这张有向无环图的边都向上
  • DFS实现:先一遍DFS,然后按照反后缀顺序返回节点(最先结束搜索顺序,然后反过来)

    public class DepthFirstOrder
    {
        private boolean[] marked;
        private Stack<Integer> reversePost;
    
        public DepthFirstOrder(Digraph G)
        {
            reversePost = new Stack<Integer>();
            marked = new boolean[G.V()];
            for (int v = 0; v < G.V(); v++)
            if (!marked[v]) dfs(G, v);
        }
    
        private void dfs(Digraph G, int v)
        {
            marked[v] = true;
            for (int w : G.adj(v))
            if (!marked[w]) dfs(G, w);
            reversePost.push(v);
        }
        //使用栈的目的就是为了使输出反向
        public Iterable<Integer> reversePost()
        { return reversePost; }
    }
    
    • 性质:对一个DAG的DFS搜索的后序反向结果就是一个拓扑顺序(线性时间)
    • 性质:一个有向图拥有拓扑顺序当且仅当其没有有向环路
      • DFS判断环路:到达一个节点时,如果其已经标记且并未退出其本身DFS调用递归,那么存在环
  • 有环意味着调度是不可能的

强连通分量 Strong Components

  • 强连通:如果一张有向图同时存在一条v到w和w到v的路径,那么v和w是强连通的

  • 强连通关系是一个等价关系

  • 强联通分量:强连通顶点的最大子集

  • 对于一张DAG,其连通分量个数为 V V V

  • 应用

    • 食物网
      • 顶点:生物
      • 边:从生产者到消费者
      • 强连通分量:具有公共能量流的物种子集(吃成一条环)
    • 软件模块依赖关系
      • 顶点:软件模块
      • 边:依赖关系(从模块到依赖)
      • 强连通分量:项目交流的模块子集
      • 解决方案:把互相依赖的模块打包到一块,或者改进设计
  • K-S算法:

    • 反转图: G G G中的强连通分量和 G R G^R GR中的相同
    • 核心DAG:将每一个强连通分量视为一个顶点,最终的图就成为了一张DAG
    • 想法:
      • 计算核心DAG的拓扑顺序
      • 运行DFS,以反拓扑顺序考虑顶点
    • 思路:
      • 计算 G R G^R GR的反后缀顺序
      • G G G上运行DFS,以 G R G^R GR的反后缀顺序遍历未标记的点(一次递归就是一个强连通分量)
      • 两趟DFS
    • 性质:计算时间正比于 E + V E+V E+V
    • 实现
    public class KosarajuSharirSCC
    {
        private boolean marked[];
        private int[] id;
        private int count;
        
        public KosarajuSharirSCC(Digraph G)
        {
            marked = new boolean[G.V()];
            id = new int[G.V()];
            // 第一趟,找到反后缀顺序
            DepthFirstOrder dfs = new DepthFirstOrder(G.reverse());
            // 第二趟,开始找分量
            for (int v : dfs.reversePost())
            {
                if (!marked[v])
                {
                    dfs(G, v);
                    count++;
                }
            }
        }
        
        private void dfs(Digraph G, int v)
        {
            marked[v] = true;
            id[v] = count;
            for (int w : G.adj(v))
            if (!marked[w])
            dfs(G, w);
        }
        
        public boolean stronglyConnected(int v, int w)
        { return id[v] == id[w]; }
    }
    
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值