Coursera - Algorithm (Stanford) - 课程笔记 - Week 16

Local Search

  • 最大割问题

    • 输入:无向图 G = ( V , E ) G=(V, E) G=(V,E)
    • 输出:一个割 ( A , B ) (A, B) (A,B),将 V V V划分为两个非空集,其割边数目为所有割最多
    • NP-完全问题
  • 可计算特例:二分图,存在一个所有边都是割边的割

    • BFS:按扩散层数归类,奇数层为一个集合,偶数层为一个集合
  • 启发式方法:局部搜索算法

    • 始终维护一个候选割集,每一次迭代只进行细微的局部调整
    1. ( A , B ) (A, B) (A,B)为一个任意的割集
    2. 主循环:如果存在一个点 v v v,存在 d v ( A , B ) > c v ( A , B ) d_v(A, B) \gt c_v(A, B) dv(A,B)>cv(A,B),那么将其从当前点集移动到另外一个点集——让割边总量显式增加
    3. 返回最终的割集 ( A , B ) (A, B) (A,B)
    • 总迭代数 ( n 2 ) \binom{n}{2} (2n)——多项式时间完成
    • 近似性能保证:至少50%的最佳结果
  • 对于最大加权(非负)割

    • 局部搜索算法仍然可用
    • 仍然能够保证50%的最优解
    • 但是不能保证多项式时间内收敛
  • 局部搜索的原则

    • X X X为某一个问题的候选解(图的割方案、TSP的遍历、CSP问题的变量取值方案)
    • 邻居:对于每一个 x ∈ X x \in X xX,明确 y ∈ X y \in X yX x x x的邻居
      • 割方案的邻居:通过切换一个顶点实现
      • 赋值方案的邻居:通过切换一个变量的取值实现
      • 遍历方案的邻居:通过切换其中两条边实现
    • 通用化局部搜索算法
      1. x x x为某一初始解
      2. x x x存在一个更优的邻居解 y y y,置 x ← y x \gets y xy
      3. 不断迭代返回最后局部最优的候选解 x x x
    • 如何选择初始解?
      • 使用启发式方法(贪心算法等)后的结果,局部搜索充当后处理优化方法
      • 没法使用启发式方法:随机地运行多次局部搜索方法,初始解随机选择,选择众多运行中最优的一个
    • 存在多个更优解时,如何选择?
      • 随机选择一个
      • 选择一个单步最大提升解
      • 更复杂的启发式方法
    • 如何定义“邻居”?
      • 更大的邻居集合带来更大的计算压力,但是也可以带来更高的近似精度
      • 寻找一个平衡点!
    • 局部搜索能够保证收敛吗?
      • 如果 X X X有限且每一步都有提升,那么一定会收敛
    • 局部搜索能够在比较快的时间内收敛吗?
      • 一般不能,但是实际应用中大多是可以的
    • 局部搜索解们是对于全局解足够好的近似解吗?
      • 并不,一部分远远达不到全局最优
      • 只能希望经过多次随机初始化之后,最优解足够好
  • 2-SAT问题

    • 输入
      • n n n个二值变量
      • m m m组二元或式
    • 输出:如果存在一个满足所有二元式的变量赋值方案,那么输出yes,否则输出no
    • 计算可行性:2-SAT问题可以在多项式时间内解决
      • 规约为一个强连通分量的计算
      • 多项时间内的可回溯搜索
      • 随机化局部搜索
    • Papadimitriou’s算法
      • 循环 log ⁡ 2 n \log_2 n log2n
        • 选择一个随机初始赋值方案
        • 子循环 2 n 2 2 n^2 2n2
          • 如果当前复制方案满足要求,终止算法并返回
          • 否则,选择任意一个为满足的二元式,随机选择其中一个变量,翻转之以满足该二元式
      • 显然的事实
        • 多项式时间内运行
        • 对于无法满足的实例,必然正确
  • 随机游走(线性)

    • 在除了0位置的每一个位置,都可以等概率随机选择向左或向右移动
    • 从0位置到达 n n n位置的步数期望为 θ ( n 2 ) \theta(n^2) θ(n2),事实上 E [ T n ] = n 2 E[T_n] = n^2 E[Tn]=n2
    • 引论: P ( T n > 2 n 2 ) ≤ 1 2 P(T_n \gt 2n^2) \le \frac 12 P(Tn>2n2)21
    • E [ T n ] = n 2 = ∑ k = 0 2 n 2 k ⋅ p ( T n = k ) + ∑ k = 2 n 2 + ∞ k ⋅ p ( T n = k ) ≥ 2 n 2 p ( T n ≥ 2 n 2 ) = 2 n 2 p E[T_n] = n^2 = \sum_{k = 0}^{2n^2} k \cdot p(T_n = k) + \sum_{k = 2n^2}^{+\infty} k \cdot p(T_n = k) \ge 2n^2 p(T_n \ge 2n^2) = 2n^2 p E[Tn]=n2=k=02n2kp(Tn=k)+k=2n2+kp(Tn=k)2n2p(Tn2n2)=2n2p
  • Papadimitriou’s算法

    • 对于一个可满足的2-SAT实例,该算法找到可行复制方案的概率为 ≥ 1 − 1 n \ge 1 - \frac 1n 1n1
    • 由随机游走算法,一次外循环失败的概率为 1 2 \frac 12 21
    • 总体失败概率 ( 1 2 ) log ⁡ 2 n = 1 n (\frac 12)^{\log_2 n} = \frac 1n (21)log2n=n1
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值