Minimum Path Sum
Solution 1
这个题是之前计算独立路径总数的进一步变体:路径数目变成最优成本。因此需要对边界状态的初始化和中间状态的更新思路进行调整:
- 边界调整:向右或者向下,路径值累加
- 中间状态更新:来自左侧或者上侧,最优路径更新。
此外,因为没有障碍物,因此我们还是可以将状态数组优化到一维。
- 时间复杂度: O ( M × N ) O(M \times N) O(M×N),其中 M M M和 N N N分别是行数和列数,全部遍历的规模
- 空间复杂度: O ( N ) O(N) O(N),其中 N N N为列数,经过优化后空间占用降为一维
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int rows = grid.size(), cols = grid[0].size();
vector<int> ans(grid[0].size(), 0);
ans[0] = grid[0][0];
for (int i = 1; i < cols; ++i) {
ans[i] = ans[i - 1] + grid[0][i]; // 向右,路径累加
}
for (int i = 1; i < rows; ++i) {
ans[0] = ans[0] + grid[i][0]; // 向下,路径累加
for (int j = 1; j < cols; ++j) {
ans[j] = min(ans[j - 1], ans[j]) + grid[i][j];
}
}
return ans[cols - 1];
}
};
Solution 2
Solution 1的Python实现
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
rows, cols = len(grid), len(grid[0])
ans = [0] * cols
ans[0] = grid[0][0]
for i in range(1, cols):
ans[i] = ans[i - 1] + grid[0][i]
for i in range(1, rows):
ans[0] = ans[0] + grid[i][0]
for j in range(1, cols):
ans[j] = min(ans[j - 1], ans[j]) + grid[i][j]
return ans[cols - 1]