LeetCode - 解题笔记 - 111 - Minimum Depth of Binary Tree

Solution 1

其实是 0110. Balanced Binary Tree 的一个小变体。整体思路反过来:前一个自底向上传回高度,并判断平衡性;本题则是自底向上(不可避免地,所有的节点都要遍历才能获得高度)传回高度,并判断最小值。但是两个题的判断条件是不太一样的,尤其是不同于平衡性比较,如果当前节点只有其中一侧节点为空,其子树的最小深度并不为0。

  • 时间复杂度: O ( n ) O(n) O(n),其中 n n n为输入的树节点个数,需要遍历所有的节点才能计算深度
  • 空间复杂度: O ( n ) O(n) O(n),其中 n n n为输入的树节点个数,DFS的搜索最好情况(完全平衡树)为 O ( log ⁡ n ) O(\log n) O(logn),最坏情况(全左偏树)为 O ( n ) O(n) O(n)
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int minDepth(TreeNode* root) {
        if (root == nullptr) {
            return 0;
        } else if (root->left == nullptr) {
            return this->minDepth(root->right) + 1;
        } else if (root->right == nullptr) {
            return this->minDepth(root->left) + 1;
        } else {
            return min(this->minDepth(root->left), this->minDepth(root->right)) + 1;
        }
    }
};

Solution 2

Solution 1的Python实现

# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def minDepth(self, root: Optional[TreeNode]) -> int:
        if root is None:
            return 0
        elif root.left is None:
            return self.minDepth(root.right) + 1
        elif root.right is None:
            return self.minDepth(root.left) + 1
        else:
            return min(self.minDepth(root.left), self.minDepth(root.right)) + 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值