Solution 1
其实是 0110. Balanced Binary Tree 的一个小变体。整体思路反过来:前一个自底向上传回高度,并判断平衡性;本题则是自底向上(不可避免地,所有的节点都要遍历才能获得高度)传回高度,并判断最小值。但是两个题的判断条件是不太一样的,尤其是不同于平衡性比较,如果当前节点只有其中一侧节点为空,其子树的最小深度并不为0。
- 时间复杂度: O ( n ) O(n) O(n),其中 n n n为输入的树节点个数,需要遍历所有的节点才能计算深度
- 空间复杂度: O ( n ) O(n) O(n),其中 n n n为输入的树节点个数,DFS的搜索最好情况(完全平衡树)为 O ( log n ) O(\log n) O(logn),最坏情况(全左偏树)为 O ( n ) O(n) O(n)
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public:
int minDepth(TreeNode* root) {
if (root == nullptr) {
return 0;
} else if (root->left == nullptr) {
return this->minDepth(root->right) + 1;
} else if (root->right == nullptr) {
return this->minDepth(root->left) + 1;
} else {
return min(this->minDepth(root->left), this->minDepth(root->right)) + 1;
}
}
};
Solution 2
Solution 1的Python实现
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def minDepth(self, root: Optional[TreeNode]) -> int:
if root is None:
return 0
elif root.left is None:
return self.minDepth(root.right) + 1
elif root.right is None:
return self.minDepth(root.left) + 1
else:
return min(self.minDepth(root.left), self.minDepth(root.right)) + 1