LeetCode - 解题笔记 - 119 - Pascal‘s Triangle II

Solution 1

0118. Pascal’s Triangle 的变体,由于杨辉三角本身具有性质:第i行结果为以i为底的组合数序列,因此可以直接通过结算得到。同底组合数的计算过程为:

C n m = C n m − 1 × n − m + 1 m \mathcal{C}_{n}^{m}=\mathcal{C}_{n}^{m-1} \times \frac{n-m+1}{m} Cnm=Cnm1×mnm+1

其中, C n 0 = 1 \mathcal{C}_{n}^{0} = 1 Cn0=1

这里面有一个额外的知识点:乘法部分可能会出现longlong结果(但是除过之后会是int),使用1LL可以在计算过程中将数据类型调整为longlong,最终返回结果调整为int。

  • 时间复杂度: O ( # R o w ) O(\#Row) O(#Row),因为需要计算当前层的每一个数目
  • 空间复杂度: O ( 1 ) O(1) O(1),除结果外,仅保存常数个状态变量
class Solution {
public:
    vector<int> getRow(int rowIndex) {
        vector<int> ans(rowIndex + 1);
        ans[0] = 1;
        for (int i = 1; i <= rowIndex; ++i) {
            ans[i] = 1LL * ans[i - 1] * (rowIndex - i + 1) / i;
        }
        return ans;
    }
};

Solution 2

Solution 1的Python实现

class Solution:
    def getRow(self, rowIndex: int) -> List[int]:
        ans = [1] * (rowIndex + 1)
        
        for i in range(1, rowIndex + 1):
            ans[i] = ans[i - 1] * (rowIndex - i + 1) // i
            
        return ans
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值